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1 MOTIVATION FOR USING GAZE ANGLES 

We found that using gaze angles to be appropriate to predict 
need for navigation aid. After completing the data collection 
experiment, we compared using 3D and 2D gaze fxation 
sequences. We found that the average Dynamic Time Warp-
ing Euclidean distance between positive (windows with the 
navigation aid present) and negative examples (windows 
without a navigation aid present), was larger in 2D than 
3D gaze fxation. The average normalized Dynamic Time 
Warping Euclidean distance was 62% and 39% for 2D and 3D 
gaze sequences respectively. These examples were created 
by randomly sampling 2000 windows from our training data 
with an equal number of positive and negative examples. 

Three dimensional gaze points contain extraneous infor-
mation (e.g. distance of the fxation from the screen) that 
are likely to mislead the predictor. Unlike the 3D gaze point 
which conveys information about the geometry of the scene, 
the 2D on-screen gaze point location is more informative of 
the user’s gaze direction. Therefore, the RNN failed to pre-
dict the need for aid with adequate accuracy using 3D point 
sequences as well. The RNN was able to reach a maximum 
accuracy of 61% with the 3D gaze points. 
In practice it is computationally more costly to compute 

the on-screen projected 2D gaze points than computing gaze 
angles. So we chose to use gaze points for the need for aid 
predictor. 
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2 TOPOLOGY OF THE ADAPTIVE NAVIGATION 
AID CLASSIFIER 

We did not use a deep network and thus we used a GPU 
for only training our recurrent neural network, but not for 
prediction. Figure 1 shows our network’s topology which 
consisted of: an input layer of size 350 connected to a hid-
den layer consisting of 512 LSTM cells, an outer sigmoid 
activation layer with a binary cross entropy loss. 

3 SPECIFYING THE AID REGION 

Using a Wilcoxon Signed-rank test (W = 18, p = 0.02, 
r = 0.62), the region outside of the permanent arrow shown 
in Figure 2 received an average gaze fxation duration of 
(M=43.78, SD=16.21) seconds, signifcantly (27.04 seconds) 
shorter than the region outside of the adaptive arrow has 
received (M=70.82, SD=41.61). 

To further investigate the efects of our adaptive arrow on 
gaze fxation duration patterns, we expanded the aid region 
to include some fxation points that could have been created 
due to participants viewing the aid using their peripheral 
vision. The expanded arrow region is shown in Figure 3. 
The area outside the permanent arrow rectangle received 
an average gaze fxation duration (M=31.9, SD=16.13) 17.75 
seconds shorter than the area outside the adaptive arrow 
(M=49.65, SD=40.21) (W = 20, p = 0.02, r = 0.59). The 
Wilcoxon Signed-rank test indicated no signifcant diference 
in the average gaze fxation duration between our adaptive 
min-map and the permanent mini-map. The region outside 
of our adaptive mini-map shown in Figure 4 received an 
average gaze fxation duration of (M=52.4, SD=20.3) not 
signifcantly shorter than the average gaze fxation duration 
the permanent min-map received (M=70.37, SD=50.5) (W = 
51, p = 0.61). 
Expanding the mini-map region to include participant’s 

peripheral vision did not change the Wilcoxon Signed-rank 
test’s signifcance. The region outside of the expanded adap-
tive mini-map received an average gaze fxation duration of 
(M=34.26, SD=17.41) seconds, while the region outside the 
permanent mini-map received (M=50.3, SD=47.95) seconds 
(W = 51, p = 0.61). 
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Figure 1: The topology of our adaptive navigation aid recurrent neural network. Which consists of 512 LSTM blocks with an 
input size of 350 (b1, b2, . . . , b512), and a sigmoid activation layer with a binary cross-entropy loss. 

Figure 2: The blue rectangle shows the arrow region used for 
our outside the aid gaze fxation computation. 

Figure 5: The blue rectangle shows the expanded mini-map 
region used for our outside the aid gaze fxation computa-
tion. We expanded the rectangle to include peripheral vision 
gaze fxation points. 

Figure 3: The blue rectangle shows the expanded arrow re-
gion used for our outside the aid gaze fxation computation. 
We expanded the rectangle to include peripheral vision gaze 
fxation points. 

Figure 4: The blue rectangle shows the mini-map region 
used for our outside the aid gaze fxation computation. 
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