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Figure 1: Left: Through a Hololens helmet, a user is observing a virtual kitten whose behavior is synthesized by our approach.
Right: We demonstrate a synthesized behavior sequence for the virtual kitten considering the geometry and semantics of the
real scene. The virtual kitten rests on the couch for a while 1○. Then it moves to the food bowl and starts to eat 2○. Afterward,
it jumps up to the coffee table to idle 3○.

ABSTRACT
Virtual pets are an alternative to real pets, providing a substitute
for people with allergies or preparing people for adopting a real
pet. Recent advancements in mixed reality pave the way for virtual
pets to provide a more natural and seamless experience for users.
However, one key challenge is embedding environmental awareness
into the virtual pet (e.g., identifying the food bowl’s location) so
that they can behave naturally in the real world.

We propose a novel approach to synthesize virtual pet behaviors
by considering scene semantics, enabling a virtual pet to behave
naturally in mixed reality. Given a scene captured from the real
world, our approach synthesizes a sequence of pet behaviors (e.g.,
resting after eating). Then, we assign each behavior in the sequence
to a location in the real scene. We conducted user studies to eval-
uate our approach, which showed the efficacy of our approach in
synthesizing natural virtual pet behaviors.
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1 INTRODUCTION
Pets enrich our lives in many ways. Pets help people live healthier
lives [30] [11]; alleviate loneliness [21]; and assist with therapy [2].
However, not everyone’s situation allows for adopting a pet. For
example, people may live in apartments which may not be pet-
friendly. A person may not be able to keep a pet due to allergies. In
such situations, virtual pets can be a good alternative to a real pet.

Virtual pet applications date back to 1995 when Dogz was re-
leased. It allowed users to adopt, raise, and breed virtual dogs. After
that, many virtual pet applications were developed, e.g., Tamagotchi,
Digimon, Giga Pets, Nintendogs. The experience of keeping virtual
pets resembles a real pet-keeping experience. People took care of

https://doi.org/10.1145/3411764.3445532
https://doi.org/10.1145/3411764.3445532
https://doi.org/10.1145/3411764.3445532


CHI ’21, May 8–13, 2021, Yokohama, Japan Liang et al.

a virtual pet as if it were real, e.g., by feeding it and bathing it.
Compared to real pets, virtual pets take up no physical space and
are convenient to care for. On the other hand, owners of virtual
pets do not need to worry about allergies and costs.

Researchers of many fields have shown increasing interest in vir-
tual pets. They explore along different directions. Some researchers
in robotics domain study the implementation of an autonomous pet
robot, e.g., perception and kinematics [31, 56]. Some psychologists
investigate the relations between human and virtual animals, e.g.,
the therapeutic effects in assisted therapy [30, 33]. Recently, the
arrival of mixed reality devices, e.g., Microsoft Hololens, provides
opportunities to introduce new forms of virtual pets that support
high-quality immersive experiences and natural interactions in
mixed reality. One of the core problems for those researches is cre-
ating autonomous and realistic behaviors for virtual pets to enable
natural interaction. There are two critical challenges to solve such
a behavior synthesis problem:

(1) How can we synthesize virtual pet behaviors akin to real
pet behaviors? Some traditional works defined pet behaviors using
fixed rules. For example, a virtual kitten always sleeps after eat-
ing. However, those hard-coded or randomly-generated behaviors
may appear unrealistic, which hardly resemble real pet behaviors,
resulting in unnatural user experiences.

(2) How can we enable virtual pets to behave rationally in a real
scene? The key feature of mixed reality—fusing the virtual world
with the real world—hints that it is foundational for the virtual
pets to understand scene information. In existing applications, e.g.,
HoloPet [41], a virtual pet is placed in front of the user regardless
of the real scene context, which may lead the virtual pets floating in
the air. Another common way is to place the virtual pet on a surface
specified by the user. Consequently, the virtual pet is restricted to
act within the specified zone, hindering its flexibility and variation.

To address the above two challenges, in this paper, we propose a
scene-aware behavior synthesis approach for virtual pets, aiming
at generating autonomous and realistic virtual pet behaviors to
provide highly immersive user experiences. To synthesize natural
behaviors, our approach trains a pet behavior generator based
on real pets data [54] using a Long Short-Term Memory (LSTM)
network. Applying this behavior generator, we can generate high-
level pet behavior sequences automatically, e.g., eating after idling.
Then we want a virtual pet to perform the generated behaviors in
a real scene rationally. We leverage computer vision techniques to
enable the virtual pet to understand the semantics of the scene, e.g.,
identifying the location of a couch. Then the generated behaviors
are instantiated at the corresponding locations, e.g., performing the
idling behavior on the couch. In addition, our approach optimizes
a feasible path for the virtual pet to travel between two adjacent
locations using an adjusted A* algorithm, e.g., a path to travel from
the food bowl (where a pet is performing eating behavior) to the
couch (where a pet is going to perform idling behavior).

The major contributions of our paper include:

• Propose to synthesize virtual pet behaviors based on the
geometry and semantics of a real scene.

• Devise a high-level pet behavior generator via training with
real pet data, and instantiate the synthesized pet behaviors
in a real scene.

• Validate the effectiveness of our approach by user studies.

2 RELATEDWORK
Emerging technologies such as mixed reality have reshaped users’
expectations for their experienceswith virtual pets. Highly-immersive
mixed reality environments bring new opportunities and technical
challenges to virtual pet applications. One important challenge is
to enable virtual pets to behave in the real world more naturally. In
this section, we briefly review virtual pet research and applications,
as well as behavior synthesis and scene semantics understanding.

2.1 Virtual Pet Research
Researchers in human-computer interaction, virtual reality, psy-
chology, and robotics have shown substantial interest in techniques
for creating virtual pets [51] motivated by a variety of potential
applications such as entertainment [1, 14], education [7, 36] and
therapeutic domain [30, 33]. We also drew inspiration from some
previous works [35, 47] while defining our evaluation metrics.

Lawson and Chesney [37] hypothesized that younger children
might benefit more from companionship with virtual pets than
adults. There are some discussions in the literature about the dif-
ferent experiences of owning virtual pets and real pets [8]. Beetz et
al. [5] and Wang et al. [62] discussed the influence of virtual pets
on humans. Norouzi et al. [44] investigated the effects of virtual
dogs in AR environment on participants’ perception and behaviors,
including locomotion related to proxemics, with respect to their
AR dog and other real people in the environment.

An important prerequisite for the above applications is that vir-
tual pets can behave realistically and reasonably. But the virtual pet
behavior in most applications is generally designed manually based
on rules or is generated randomly, lacking varieties or reasonability.
The observations motivate us to design a framework to synthesize
virtual pet behaviors by learning from a real pet dataset. In addition,
the synthesized virtual pets perform behaviors at appropriate scene
locations based on the understanding of scene semantics, which
facilitates the virtual pets applications in mixed reality.

2.2 Behavior Synthesis
Behavior synthesis aims at creating models automatically synthe-
sizing behaviors. Many works have been proposed to tackle be-
havior and motion synthesis for virtual characters [28, 34, 48] and
robots [12].

There are two main categories of behavior synthesis approaches:
data-driven approaches and model-based approaches. The data-
driven approaches use machine learning techniques to learn behav-
ior models from collected behavior datasets; in other words, using
supervised approaches to synthesize behaviors. The machine learn-
ing techniques applied vary from simple naive Bayes classifiers [4],
hidden Markov models [60], and dynamic Bayesian networks [45],
to support vector machines [19] and incremental classifiers [46].

With the development of deep learning techniques, Recurrent
Neural Networks (RNN) received substantial attention from re-
searchers because of its ability to model sequential data. The vari-
ants including Long Short Term Memory (LSTM) [27] and Gated
Recurrent Units [9] have proven to be very successful for sequence
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Figure 2: The overview of our approach. (a) The input is a real scene. (b) The pet behavior synthesis includes two components:
data-driven pet behavior generator and pet behavior instantiation. First, the pet behavior generator synthesizes a sequence of
behaviors. Then in the instantiation component, a location sequence is generated for the virtual pet to perform the behaviors
in the real scene. (c) The output shows some examples of the generated pet behaviors, with the color of red, blue, green, purple,
and yellow, depicting the behavior of eating, resting, idling, scratching and soiling, respectively.

generation tasks, such as text generation [58] , handwriting predic-
tion [23], and image caption generation [32].

One application direction of behavior synthesis techniques is
robot behavior synthesis, aiming at enhancing and enriching inter-
active experiences with users. Jung et al. [31] and Song et al. [56] use
emotional models to create behaviors for robots. Desai et al. [12] pro-
pose a simulation-driven robot motion design system that enables
the design of expressive behaviors using high-level and semantic
descriptions of behavior properties.

Another application direction of behavior synthesis is video
games. An agent-based system is usually designed to guide be-
haviors synthesis in video games. In some works, Finite State Ma-
chine [15, 61] is used to synthesize the characters’ behaviors, where
the bahaviors are regarded as states to construct the state machines.
The Belief-Desire-Intention (BDI) model [20] is also an option to
deal with behavior synthesis in some games, e.g., the work of [13]).
Concepts such as attentional and emotional involvement [64] and
immersion [24] also play vital roles in the behavior synthesis in the
game designs.

Compared with the behavior synthesis approaches in the ap-
plications of video game and robot pets, our approach is mainly
different from previous works in terms of two aspects: (1) The be-
haviors in previous works are generally designed manually based
on rules. Our approach synthesizes behaviors based on learning
from a real pet dataset. (2) Previous virtual pets are unaware of
scene semantics. Our virtual pet perceives the semantics to perform
behaviors at appropriate scene locations. These two features entail
more realistic and reasonable virtual pets behaviors.

2.3 Scene Semantics Understanding
Another focus of our approach is on using scene understanding
knowledge to facilitate behavior synthesis in a real scene. To this
end, we detect objects which are typically associated with specific
pet behaviors. Object detection aims to determine whether there are
any instances of objects from given categories, such as a table, chair,
couch in the real-world environment. If any such object is present,
the spatial location is returned via a bounding box (an axis-aligned
rectangle tightly bounding the object) [18, 53], a precise pixel-wise
segmentation mask [65], or a closed boundary [38]. Please refer to
the recent survey [39, 65] for a comprehensive review.

Recently, deep learning techniques flourished given their power-
ful capability of learning representations directly from raw images.
Deeper CNNs have led to record-breaking improvements in the
detection of general object categories. A region-based framework
is commonly used in deep detection approaches, such as Detector-
Net [59], OverFeat [55], MultiBox [17], and fast RCNN [22]. Region
proposals are first generated from the input. CNN features are ex-
tracted from these regions and classifiers are used to determine the
category labels of the proposals.

In our approach, a virtual pet is visualized in a 3D scene via
mixed reality. Understanding the scene context is a prerequisite for
placing the virtual pet at reasonable spatial locations in the real
world. To achieve this, we apply Mask RCNN [26], a state-of-the-art
segmentation mask approach to obtain the pixel-wise location of
furniture objects. Mask RCNN is an extension of Faster RCNN [52],
adding a branch to output a binary mask for each region of interest.
It detects objects in an image while simultaneously generating a
high-quality segmentation mask for each object instance.

3 OVERVIEW
Our goal is to synthesize virtual pets with behavior at appropriate
locations naturally and reasonably in a real scene. Fig. 2 shows the
overview of our approach for accomplishing this goal.

The input of our approach is a real scene, as which is shown in
Fig. 2 (a). It can be captured by a 3D sensor, e.g., the depth camera of
a Hololens. The approach consists of two components: data-driven
pet behavior generator and pet behavior instantiation. To test our
approach, we define five categories of common pet behaviors [6],
namely, resting, idling, eating, soiling, and scratching, which our
approach can synthesize.

Our approach proceeds as follows. Firstly, it generates a sequence
of high-level pet behaviors through a data-driven pet behavior gen-
erator. The generator is designed based on a two-layer LSTM net-
work and is trained on an annotated pet behavior dataset. Secondly,
each behavior is assigned to take place at a location in the real
scene by the pet behavior instantiation, which consists of three
phases: scene understanding, location instantiation, and path in-
stantiation. In the scene understanding phase, we generate several
object location proposals in the real scene using computer vision



CHI ’21, May 8–13, 2021, Yokohama, Japan Liang et al.

techniques. Each object may be associated with one or more pet be-
haviors, e.g., a couch is associated with resting and idling behaviors.
In the location instantiation phase, based on the object proposals,
we assign the generated sequence of high-level pet behaviors to a
series of physical locations, where the virtual pet should perform
the behaviors. Finally, in the path instantiation phase, we employ
a pathfinding algorithm to generate natural and smooth paths for
the virtual pet. After completing a behavior at a location, the pet
follows the generated path to travel to the next location to perform
the next behavior.

By wearing a mixed reality helmet, e.g., a Hololens, a user may
observe the virtual pet synthesized by our approach. It is worth
noting that we use a virtual kitten as an example to demonstrate
our approach. It is possible to extend and apply our approach to
synthesize behaviors for other virtual pets as well.

4 DATA-DRIVEN PET BEHAVIOR
GENERATOR

The real pet behaviors encode patterns, reflecting the relationships
among behaviors, e.g., idling behavior most likely following eating
behavior. Applying such patterns to the generationmay improve the
realism of the virtual pets, resulting in better human experiences. To
this end, we apply a data-driven approach to learn a behavior gener-
ator to model the behavior patterns based on a real pet dataset. By
such a generator, a synthesized virtual pet is able to mimic real pets’
behaviors. SupposeB = {eatinд, restinд, idlinд, soilinд, scratchinд}
is the behavior set. We automatically generate a behavior sequence
S = (s1, s2, · · · , sN ), where sn ∈ B.

4.1 Pet Behavior Dataset
To train the behavior generator, we annotated a cat dataset [54] with
the corresponding behaviors. The original dataset recorded two cats’
positions in one apartment over time, which were captured with
bluetooth tracking devices. Then a k-nearest neighbors algorithm
was used to cluster positions. Each cluster is assigned an object
label, indicating that this cluster’s positions are nearer to the object.
The objects include a table, couch, window, and so forth. In other
words, the sequences of positions the cats traversed are used to
create an object sequence according to the object present near each
position. Totally, the sequence consists of 1, 440 minutes data.

In order to annotate the locations with the pet behaviors, we
invited 34 participants, who had experienced raising cats for 1 to
10 years, to complete a questionnaire about where pet behaviors
typically take place. The participants were given 24 common objects,
one by one. They were asked to choose one of the five behaviors
from B that they think is most closely associated with each type of
object. For example, one may think that resting is the most closely
associated behavior with a bed.

From the questionnaire, we estimate the frequency of a behavior
associated with each type of object. To mitigate the influence of
outliers, for each object type, we only consider the behaviors whose
votes are higher than 10% as associated with that object type. Then,
we assign the behavior labels to the object by sampling from the
frequency. The obtained behavior sequences are later used to learn
the pet behavior patterns. Please refer to the supplementary for

participants’ choices for the behavior most closely associated with
each object type.

4.2 Sequential Pet Behavior Generation
We utilize a LSTM network [63] to learn pet behavior patterns. A
LSTM network is capable of modelling long sequence data patterns
well by encoding history information with low computation cost.
Although a higher-order Markov chain can also consider history
information, learning the Markov chain is usually time expensive
and convergence can be problematic.

To train the model, we input the annotated behavior sequences.
A 5d one-hot vector represents one behavior in the sequence. Each
entry of the vector has a binary value, with 1 indicating correspon-
dence to a behavior type and 0 otherwise. For example, if the ith
entry is 1, it indicates the ith behavior type. The behavior sequences
are divided into fragments, and each fragment contains 100 sequen-
tial behaviors. The fragments are then fed to the LSTM network for
the training.

We use a two-layer LSTM structure for the training process, each
of which consists of 512 hidden units. A dropout of 0.2 is added
after each layer. The weights of the network are updated iteratively.

After the training, the LSTM network can predict a behavior
based on previous behavior. To enrich the variety of the generated
results, we adjust the process slightly in the generation. We do
not output the behavior with the highest probability as we do
in the training process. Instead, we sample from the probability
distribution of all behaviors from the softmax layer. A random
behavior initializes the generation. Iteratively, we obtain a behavior
sequence S = (s1, s2, · · · , sN ). Please refer to the supplementary
materials for the structure in the training and generation process.

5 PET BEHAVIOR INSTANTIATION
Using the generated behavior sequence, next we instantiate the
abstract and high-level behaviors in a real scene, i.e. generating a
physical location for each behavior to take place and generating
a feasible transition path between two locations. As mixed reality
aims to fuse the real and virtual worlds, understanding the real scene
is the first step for the instantiation, such as knowing the object’s
location and the scenic terrain. Then the instantiation process is
performed according to the understanding results.

Formally, we generate a location sequence L = (l1, l2, · · · , lN ),
where the location ln corresponds to the behavior sn . Each location
ln is a 3D location at which the behavior sn takes place.

Besides, we generate a path sequence P = (p1,p2, · · · ,pN−1).
Following the path sequence P , the virtual pet walks around in the
scene to perform the synthesized behaviors. If the location changes,
i.e. ln , ln+1, following the path pn ∈ P , the virtual pet walks from
location ln to the next location ln+1. Each path pn is a sequence
of 3D locations: pn = (t1, t2, · · · , tE ), where t1 = ln is the starting
point of the path and tE = ln+1 is the ending point.

5.1 Scene Understanding
We obtain two types of information of the scene in the understand-
ing process: geometry and semantics. The geometry reflects the
scene’s terrain information, whereas the semantics reflects where
and what the objects are.
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Figure 3: A scene understanding result. (a) The 3D recon-
struction of a scene scanned by a Hololens. (b) The detected
objects, with each mask color depicting a distinct object.

Scene Geometry. We use the spatial mapping technique of the
Hololens to obtain the 3D model of a scene. For a room of 200
square feet, it takes about 2 minutes to scan and reconstruct its 3D
model. The time varies according to the scene’s size. The geometry
is represented by triangular meshes, as shown in Fig. 3 (a).

Scene Semantics. Abehaviormay take place around an object, e.g.,
resting on a bed. Thus, we detect all objects related to pet behaviors.
Since detection on 2D images is more robust and accurate, we
utilize a 2D object detection approach to detect objects and then
project the detection results to 3D space. We take two steps to do
the detection.

Firstly, we apply the Mask R-CNN approach [26] to detect the
objects (where behaviors may take place) on 2D images, which are
captured by the Hololens camera. Fig. 3 (b) shows an example of
object detection. The objects (e.g., couch) are detected and assigned
different colors according to the masks generated by Mask R-CNN.

Secondly, we roughly estimate the camera’s parameters from
the 2D image using the method of Horry et al. [29]. Specifically,
we extract the vanishing point based on the perspective projection
principle to estimate the camera parameters. With the estimated
parameters, we set up a virtual camera in the 3D scene to render
images. Among the rendered images, the image that is most similar
to the 2D image in the detection, is used to calculate the correspond-
ing locations of the objects in the 3D scene. Then we project the
2D detection results onto the 3D scene to obtain the categories and
locations of the objects in the 3D scene.

5.2 Behavior Location Instantiation
For the generated abstract and high-level behaviors, virtual pets
need physical locations to perform them. Because behaviors are
related to objects, we use the captured relationship between the
behavior and object from the questionnaire in Section 4.1 to ob-
tain the related object. Then the location is represented by the 3D
coordinate of a related object’s center. For each behavior sn , we
generate a corresponding location ln so that the virtual pet can
perform the behavior sn at location ln in the real world.

For each object, we define a prior probability distribution to
model the possibility that each behavior may take place at the object.
Two constraints are considered: a pet’ preference to perform the
behavior at that object and the distance from the current location
of the virtual pet to the object’s location.

Figure 4: (a) A visualization of the path geometry cost for
each cell. The redder a cell is, the higher its cost value is.
(b) An illustration of the optimized paths. The state bar at
the top shows the sequence of objects that the pet travels to.
Each color refers to a path going from one object’s location
to another object’s location (e.g., purple refers to going from
the litter to the table).

Suppose I objects are in the scene.We define the prior probability
θn (i) for the pet to perform the nth behavior at the ith object as:

θn (i) =
1
E
fn (i)

e−
1

dmax |D(o0,oi ) |∑I
i=1 e

− 1
dmax |D(o0,oi ) |

, (1)

where fn (i) is the frequency of the nth behavior taking place at
the ith object, D(·) is the Euclidean distance between two locations,
where o0 is the current pet location and oi is the location of the
ith object. The normalization term dmax is the maximum distance
between two objects in the scene. 1

E is a parameter to normalize
θn (i) to [0, 1].

Given a behavior sequence generated from the LSTM network
(Section 4.2) and an initial location, we sample a corresponding
location sequence L = (l1, l2, · · · , lN ) for the virtual pet according
to the probability defined in Eq. (1).

5.3 Path Instantiation
After the location instantiation step, we instantiate a path for every
two adjacent locations, i.e. ln and ln+1, to enable the virtual pet to
walk around in the real scene. Based on the observation of real pet
behavior, we assume empirically that pets prefer to walk on paths
with few obstacles during the transition (walking with fewer efforts)
and walk in an open area instead of a crowded area (walking in
open areas). Thus we model these factors by a cost function defined
in Eq. (2) and an adjusted A∗ algorithm [25] to optimize the cost.

To calculate the path efficiently, we discretize the 3D space by
gridding the surfaces of the 3D scene with 10cm × 10cm cells. Then
the path is represented by a sequence of adjacent cells.

Path Cost. Starting from the current location ln , we apply theA∗

algorithm to find a path to the destination ln+1 with the smallest
path cost. At each iteration, A∗ chooses a cell to extend the path. It
does so based on three costs: the geometry cost of the next cell, the
current path cost, and an estimate of the cost required to extend
the path all the way to the destination. We define the path cost as:

Ctotal(m) = λgCg(m) + λsCs(m) + λhCh(m), (2)
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Figure 5: The living room, bedroom, and kitchen scenes used in our experiments. The top row shows the input scene. The
middle row demonstrates some generated behaviors. The bottom row shows the generated behavior sequence visualized by a
state bar. Each sequence consists of 100 behaviors and each behavior is shown by one color in the bar.

wherem is the next cell on the path. Cg(m) is the geometry cost;
Cs(m) is the path cost from the starting location to cellm; Ch(m)

is a heuristic term which estimates the path cost from m to the
destination. λg, λs, and λh are the weights of the costs and are set
as 0.2, 0.6, and 0.2, respectively.

We use the geometry cost Cg(m) to let the virtual pet mimic a
real pet’s movement. We consider two constraints: (1) A real pet
usually prefers to spend less energy travelling from one location to
another. For example, compared to a path which requires the pet to
jump over a high obstacle (e.g., a cupboard) to reach its destination,
the pet may prefer another path without high obstacles. (2) A real
pet also prefers to move in spacious rather than in crowded areas to
reach the destination. To favor such two considerations, we define
the geometry cost for the cellm as:

Cg(m) = λtHt(m) + λcHc(m), (3)

whereHt(m) is the height of the cellm, which allows us to model the
“roughness” of the terrain. This term penalizes paths which require
the virtual pet to cross over high objects. Hc(m) is the average
height difference between the m cell and its 8 neighbors. Hc(m)

penalizes crowded paths. λt and λc are the corresponding weights,
which are both set as 0.5 by default in our experiments. Fig. 4 (a)
visualizes the path geometry cost for each cell of the scene.

Cs(m) is the cost of the path from the start location ln tom. It is
defined as:

Cs(m) =

m∑
i=ln

Cg(i). (4)

Ch(m) is the cost of the path from the extended cellm to the desti-
nation ln+1. It is defined as:

Ch(m) =

ln+1∑
i=m

Cg(i). (5)

Path Finding. The A∗ algorithm selects the path that minimizes
the cost defined in Eq. (2). The implementation of A* algorithm uses
a priority queue to perform the repeated selection of minimum-
cost cells to expand. At each step of the algorithm, the cell with
the lowest Ctotal(m) value is extracted from the queue; and the
Cs(m), Cg(m), and Ch(m) values of its neighbor cells are updated
accordingly. These neighbor cells are added to the queue.

The algorithm proceeds until the destination cell have a lower
Ctotal(ln+1) value than any cell in the queue (or until the queue is
empty). The cells along the path constitute the solution, following
which the virtual pet can travel from location ln to location ln+1.
Fig. 4 (b) shows some examples of the optimized paths.

6 EXPERIMENTS
Our approach is implemented using C# and Unity 5.6 and is run on
a Hololens. Due to the limited computing resource of the Hololens,
some components ran on a PC, including object detection, behavior
learning and generation. The PC is equipped with 16GB RAM, an
Nvidia Titan X graphics card, and a 2.60GHz Intel i7 processor.

We conducted experiments on three common scenes: living room,
bedroom, and kitchen. The scenes are shown on the top row in Fig. 5.
The initial behavior of the pet in each scene was randomly gen-
erated and then propagated to the pet behavior generator. Since
some behaviors may not have corresponding objects in one scene,
e.g., no soiling behavior related objects in the bedroom and in the
kitchen, our approach first examined the objects. If there were not
any objects for one behavior, we would avoid sampling the corre-
sponding behavior in the generation. After that, each behavior was
instantiated to a physical location in the scene. Finally, the adjusted
A∗ algorithm optimizes a path for the virtual pet to walk along
between two adjacent locations. Please refer to the supplementary
materials for the detected object lists in each experiment scene.
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There are 5, 4, and 3 behaviors generated in the living room,
bedroom, and kitchen scene, respectively. In the bedroom scene,
the soiling behavior is excluded because there is no corresponding
object, i.e. litter, detected in the scene. Similarly, The kitchen scene
does not have the resting and soiling behavior.

It is worth noting that some behaviors and objects exist many-
to-many relationships. One behavior may happen around different
objects. Take the idling behavior in the living room as an example.
Its corresponding objects in the scene comprise table, window, and
couch. During the location instantiation process, the idling behavior
was initiated on the table, on the couch, or near the window, based
on the prior probability defined in Eq. 1. As shown in the middle
row of Fig. 5 (a), one idling behavior was instantiated on the table,
and the other was near the window. Of course, one object may
relate with more than one behavior. For example, the bed in the
bedroom scene is related with both resting and idling. The middle
row of Fig. 5 (b) demonstrates the two behaviors on the bed. In
addition, there was a consistent one-to-one match between the
behavior of eating and food bowl, the behavior of scratching and
the cat scratcher. Fig. 5 (c) shows two examples of the eating and
scratching behavior, which were instantiated to the location of the
food bowl and of the scratcher, respectively.

Please see the supplementary video for the visualization of the
behavior results used in our experiments.

7 USER STUDY
We conducted user studies to validate the effectiveness of our ap-
proach and investigated whether the synthesized behaviors were
realistic and reasonable. We carried out experiments to evaluate
the component of behavior generation, location instantiation, and
path instantiation, respectively.

Participants. We recruited 20 participants to take part in the user
studies. The participants were aged 18 to 50, consisting of 10 males
and 10 females. All subjects reported normal or corrected-to-normal
vision with no color-blindness.

10 participants reported that they had a pet cat for more than
one year. 8 participants reported that they had the experiences of
playing with cats more than once a month. The other 2 participants
reported that they had the experiences of playing with cats less
than once a month. Note that due to the limited group size, we did
not analyze prior ownership influences.

Procedure. Through wearing a HoloLens helmet, the participants
may observe the synthesized virtual pet. During the experiments,
the participants were allowed to walk around freely in the scene.

Each participant observed the virtual pet in three scenes, i.e.
living room, bedroom, and kitchen. The three scenes were shown
to the participants with a random order. After experiencing in each
scene, the participants were required to answer a questionnaire
about their observations. We opted to use a 5-point Likert scale,
with 1 meaning "strongly disagree" and 5 meaning "strongly agree".

Please refer to the supplementary materials for the original rat-
ings and the detailed numbers of statistics test results.

Idle Rest Eat Soil Scratch

Idle 0.75 0.11 0.04 0.04 0.06
Rest 0.27 0.62 0.01 0.05 0.05
Eat 0.43 0.07 0.38 0.05 0.07
Soil 0.55 0.14 0.05 0.17 0.09
Scratch 0.52 0.13 0.06 0.09 0.20

Table 1: Prior probability matrix for behavior transitions.

7.1 Behavior Generation Evaluation
In this experiment, we investigated the efficacy of the behavior gen-
eration component. We compared the behavior sequence generated
by our approach to the ones generated by two other approaches.
The compared approaches were:

(1) Ours. The behavior sequence was generated based on the
LSTM network discussed in Section 4.

(2) Prior sampling. The prior sampling approach resembles a
first-order Markov chain approach [60], which is akin to some
digital pets synthesis, e.g., Neopets [42]. We created a 5 × 5 prior
probability matrix for the behavior transition, which is shown
in Table 1. The element in the ith row and jth column was the
frequency of transferring from the ith behavior to the jth behavior,
which was estimated from the pet behavior dataset and ranged
from 0 to 1. Given the previous behavior, the next behavior was
generated by sampling according to the prior probability.

(3) Random sampling. Given a previous behavior, the next be-
havior was randomly generated by selecting a behavior following a
uniform distribution. This approach is similar to some game logic,
e.g., random monsters in Dragon Quest [16].

We applied each approach to generate one sequence with 100
behavior states using the same initial behavior (idling) as the input.
We control other components such as location and path instanti-
ation that could affect the ratings. In other words, we fixed the
location for each behavior in one scene (e.g., resting always took
place on the couch in the living room).We also fixed the paths across
different locations, which were generated by the path instantiation
in our approach.

After observing the generated behaviors, the participants were
asked to rate whether "the virtual pet switches its behavior natu-
rally". During the experiment, the participants were not explicitly
informed which approach we used to generate the pet’s behavior.
The behavior sequences generated by the three approaches were
shown to the participants in a random order.

Fig. 6 shows the visualization of the participants’ ratings using
box plots. We conducted a Friedman test on the participants’ ratings
in all three scenes overall. The results showed a significant differ-
ence among the three approaches (χ2 = 37.86,p < .05,d f = 2)
at the α = 0.05 significance level. A post-hoc test using Wilcoxon
Signed-Ranks Test with Bonferroni correction (at the correlated
significance level of α = 0.017) showed that the median rating of
our approach (Md = 4, SD = 0.93) was significantly higher than
those of the prior sampling approach (Md = 3, SD = 0.93)(W =

320.5,p < 0.017, r = 0.43) and the random sampling approach
(Md = 2, SD = 1.18)(W = 180.0,p < 0.017, r = 0.65). The results
indicated that the behaviors synthesized by our approach were
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Figure 6: The box plots of the participants’ ratings on the be-
havior sequences generated by our approach, the prior sam-
pling approach, and the random sampling approach. The
bottom and top edges of the boxes depict the 25th and 75th
percentiles, respectively. The horizontal lines depict theme-
dian ratings. The whiskers extend to the most extreme data
points. The circles depict the outlier ratings.

perceived as more natural than the behaviors synthesized by the
prior and random sampling approaches.

Furthermore, we conducted a Friedman test on the participants’
ratings in each scene individually to investigate whether our ap-
proach is efficient in each scene. The results also showed signifi-
cant differences among three approaches in the living room (χ2 =
14.19,p < .05,d f = 2) and bedroom (χ2 = 23.76,p < .05,d f =
2). The Wilcoxon Signed-Ranks Test with Bonferrroni correction
(at the correlated significance level of α = 0.017) supported that
the behavior sequence generated by our approach in the living
room (Md = 4, SD = 0.89) was perceived as more natural than
those generated by the prior sampling approach (Md = 3, SD =
1.02)(W = 19.5,p < 0.017, r = 0.63) and the random sampling
approach (Md = 2, SD = 1.12)(W = 18.0,p < 0.017, r = 0.66).
In the bedroom scene, the results were similar. Please refer to the
supplementary materials for more details.

The Friedman test did not show any significant difference among
approaches for the kitchen scene.We believe the reason is that there
were only three behaviors in the kitchen (i.e. idling, eating, and
scratching) which were all short-term behaviors. One advantage of
our generator is modeling behavior patterns, especially long-term
behaviors. For “long-term”, the t-th behavior could be affected by
the 1st to t-1th behaviors; for “short-term”, a common setting is to
consider information in a time window, e.g., several frames.

For example, when the resting behavior was generated by our
approach, the virtual pet stayed at one place for a while to perform
“resting”. In constrast, the compared approaches generated a be-
havior for the virtual pet to prompt it to frequently and quickly
switch from the resting state to another state, which the partici-
pants might find unnatural for the virtual pet. This quick switching
pattern occurred more frequently in the living room and bedroom
scenes when using the compared approaches, which might have
prompted the participants to rate our approach higher for those
scenes. Since the kitchen contains only short-term behaviors, it
was difficult for the participants to perceive apparent differences
among the behaviors generated by different approaches.

Figure 7: The box plots of the participants’ ratings on the
locations instantiated by our approach and by the random
approach. The bottom and top edges of the boxes depict the
25th and 75th percentiles, respectively. The horizontal lines
depict the median ratings. The whiskers extend to the most
extreme data points. The circles depict the outlier ratings.

7.2 Location Instantiation Evaluation
In this experiment, we want to evaluate the design of location
instantiation. We compared two approaches:

(1) Ours. The behavior location was instantiated by our approach
as discussed in Section 5.2.

(2) Random approach. Performing a given behavior at the lo-
cation of an object which is randomly selected using a uniform
distribution among the possible objects of that behavior. For exam-
ple, in the living room, the “idling” behavior could be performed
at 3 possible objects (table, window, and couch), and the “idling”
behavior was instantiated at the location of one of these objects
selected with a probability of 0.33.

We also controlled the behavior generation and path instantia-
tion in this study. Both approaches used the same behavior sequence
generated by our approach in Section 7.1 as input to instantiate
the corresponding location sequence for each behavior. We fixed
the paths between every two objects, which were generated by the
path instantiation component of our approach (Section 5.3).

After the participants observed the virtual pets in the scene,
we asked them two questions to investigate the efficacy of the
location instantiation component: (1) whether “the switch between
two locations are reasonable” and (2) whether “the locations are
reasonable for the behaviors”. The participants’ answers to these two
questions are visualized by box plots in Fig. 7 (a) and (b) respectively.
We carried out aWilcoxon Signed-Ranks Test to analyze the ratings.

For the first question about the rationality of location switching,
theWilcoxon Signed-Ranks Test indicated that themedian rating on
the results of our approach in all three scenes overall (Md = 4, SD =
0.77) was significantly higher than that of the random approach
(Md = 2, SD = 0.97)(z = 5.478,p < .05). For the individual scene,
our approach performed similarly. The median ratings were all 4
(the standard deviations were 0.77, 0.80 and 0.70 respectively) and
were significantly higher than the ones of the random approach
in the living room (Md = 3, SD = 0.97)(z = 2.715,p < .05), the
bedroom (Md = 2, SD = 1.02)(z = 3.186,p < .05), and the kitchen
(Md = 2.5, SD = 0.83)(z = 3.690,p < .05). The results supported
that the location switches generated by our approach were more
rational than the ones generated by the random approach.
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Figure 8: The box plots of the participants’ ratings on the
paths instantiated by our approach, by the traditional ap-
proach, and the direct path approach. The bottom and top
edges of the boxes depict the 25th and 75th percentiles, re-
spectively. The horizontal lines depict the median ratings.
The whiskers extend to the most extreme data points. The
circles depict the outlier ratings.

For the second question about location rationality, the Wilcoxon
Signed-Ranks Test indicated that the median rating of our ap-
proach in all three scenes overall (Md = 4, SD = 0.84) was also
significantly higher than that of the random approach (Md = 3,
SD = 1.03)(z = 5.103,p < .05). For the three individual scenes,
the Wilcoxon Signed-Ranks Test results supported that the me-
dian ratings of our approach were all significantly higher than the
ones of the random approach. For example, for the kitchen scene,
the median rating of our approach (Md = 4, SD = 0.83) was sig-
nificantly higher than that of the random approach (Md = 2.5,
SD = 1.19)(z = 2.775,p < .05).

7.3 Path Instantiation Evaluation
We compared the path instantiation component with other two
approaches:

(1) Ours. The path was optimized by the adjusted A∗ algorithm
by considering the geometry cost (Equation (3)) in the optimization.

(2) Traditional approach. The traditional approach is commonly
adopted by robots (e.g., [10]). The path was optimized by a tradi-
tional A∗ algorithm without considering the scene geometry. To
make the compared approach more reasonable, we assume that the
virtual pet prefers to walk on the ground when it travels from one
location to another. Before the optimization, we preprocessed the
scene by excluding cells whose height was higher than 10 cm.

(3) Direct path approach. The direct approach is commonly adopted
by most AR applications (e.g., [43, 57]). The path was a straight line
between two locations. This approach considered neither scene
geometry nor physical constraints. If there were some obstacles on
the straight-line path, the virtual pet would cross it directly.

The participants were asked to answer two questions about the
obstacles avoidance and the rationality of the paths: (1) whether
“the virtual pet takes rational paths to avoid the obstacles”. and (2)
whether “the virtual pet moves around with reasonable paths”. The
ratings are visualized by box plots in Fig. 8 (a) and (b), respectively.

We conducted Friedman tests on the participants’ ratings on ob-
stacles avoidance. The results showed a significant difference among
the three approaches in all the scenes (χ2 = 29.84,p < .05,d f = 2)
at the α = 0.05 significance level. The results of post-hoc tests us-
ing Wilcoxon Signed-Ranks Test with Bonferroni correction (at the
correlated significance level of α = 0.017) indicated that the median

rating of our approach was significantly higher (Md = 4, SD = 1.09)
than the median ratings of both the traditional approach (Md = 3.5,
SD = 0.99)(W = 222.5,p < 0.017, r = 0.44) and the direct path ap-
proach (Md = 2, SD = 1.43)(W = 234,p < 0.017, r = 0.59) in all
of the scenes. When the tests were done on the scenes individually,
the results supported similar conclusions in the living room scene
and in the bedroom scene. Take the bedroom scene as an example.
The Friedman tests showed a significant difference among the three
approaches (χ2 = 11.39,p < .05,d f = 2). The results of the post-
hoc tests using Wilcoxon Signed-Rank Test with Bonferroni correc-
tion (at the correlated significance level of α = 0.017) indicated that
the median rating of our approach was significantly higher (Md = 5,
SD = 0.95) than the median ratings of the traditional approach
(Md = 4, SD = 1.23)(W = 17,p < 0.017, r = 0.60) and the direct
path approach (Md = 2, SD = 1.50) (W = 29,p < 0.017, r = 0.64).

Interestingly, we found no statistically significant differences
between our approach and other approaches for the kitchen scene.
We believe this is due to the characteristics of the kitchen scene’s
layout. It has few obstacles between any two locations. So the par-
ticipants could not perceive obvious differences among the results
of the three approaches.

To investigate the rationality of paths, we conducted the Fried-
man test on the participants’ ratings. The test showed statistically
significant differences among the three approaches at the α = 0.05
significance level for all three scenes overall (χ2 = 34.60,p <
.05,d f = 2), the living room scene (χ2 = 16.54,p < .05,d f = 2),
the bedroom scene (χ2 = 12.48,p < .05,d f = 2), and the kitchen
scene (χ2 = 7.05,p < .05,d f = 2).

We conducted post-hoc tests using Wilcoxon Signed-Ranks Test
with Bonferroni correction (at the correlated significance level
of α = 0.017) to determine the differences among the three ap-
proaches. The results indicated that the median rating of our ap-
proach (Md = 4.5, SD = 1.09) was significantly higher than the me-
dian ratings of the traditional approach (Md = 3, SD = 1.00)(W =

171.5,p < 0.017, r = 0.57) and the direct path approach (Md = 3,
SD = 1.43)(W = 174.0,p < 0.017, r = 0.60) for all three scenes
overall. For the individual scene tests, the results supported sim-
ilar conclusions for the living room and the bedroom. For ex-
ample, for the living room, the median rating of our approach
(Md = 5, SD = 1.09) is significantly higher than the median
ratings of the traditional approach (Md = 3, SD = 0.77) (W =

24,p < 0.017, r = 0.58) and the direct path approach (Md = 2,
SD = 1.07)(W = 8.0,p < 0.017, r = 0.76). For the kitchen,
the Wilcoxon Signed-Ranks Test did not show a significant dif-
ference in the ratings of our approach and the traditional approach
(W = 25.0,p = 0.067, r = 0.41). It did not find a significant dif-
ference in the ratings of our approach and direct approach neither
(W = 26.5,p = 0.097, r = 0.20).

7.4 User Feedback
In the experiments, most participants thought that the virtual kit-
ten driven by our approach was interesting, appealing, and vivid.
They stated that if there was such a virtual pet application, they
would like to try it. To further analyze users’ attitudes, we con-
ducted sentiment analysis of the user comments via the Stanford
CoreNlp natural language processing toolkit [40]. We input the
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comments to the model and got the attitudes as "positive" or "nega-
tive" respectively. The results show that most participants (18 of 20)
commented positively on our approach. There were some adjectives
they used to describe their positive user experiences: realistic, vivid,
attractive, etc. Several users (2 of 20) left negative comments. They
thought they "disliked virtual pets" and "had no interests" in using
such an application.

Some participants stated that the virtual kitten was smarter than
those they had seen in other pet applications. For example, one
participant said "It is amazing that the pet can choose different places
to sleep. It seems that the pet understands the real environment".
Another participant commented that "It is surprising to see that
the pet crossed the obstacle in the real scene" after experiencing the
compared direct path approach, though it was a common strategy
in most current applications. Overall, most participants were aware
of the effect of each component in our pipeline, e.g., generating
behaviors akin to real pets, considering the surroundings. Some
participants commented on the relationship between the pet and
real-world objects in the scene. For example, some participants
commented that the sheet should be wrinkled as the kitten walked
on it for the bedroom scene. This is an issue with regards to physical
simulation. While in our work, we focused on how pets understand
the real world and behave naturally.

On the other hand, some participants asked whether they could
select another type of animal as their virtual pet, e.g., a dog. We
used a kitten as an example to demonstrate our approach. We could
extend our pipeline to synthesize the behaviors for other pets. Some
participants expressed interests in raising some imaginary pets, e.g.,
dragon, unicorn. Such feedbacks inspire us to create behavior gener-
ators for imaginary pets in our future work, e.g., we may augment a
real pet behavior dataset with some fictional pet behaviors to train
a behavior generator for imaginary pets.

8 CONCLUSION
We proposed to synthesize natural and reasonable virtual pet be-
haviors according to the semantics of a real scene. Our approach
learned behavior patterns from real pet data to synthesize high-
level behavior sequences. We leveraged computer vision techniques
to associate the high-level behaviors with a real scene by generating
the corresponding location sequences and paths across locations.

We focused on exploring the pipeline of generating virtual pet
behaviors by considering scene context. The behavior generator
was trained on a real cat’s location dataset. Using this dataset, there
were two limitations : (1) The locations were captured in an indoor
scene through Bluetooth devices. Trained on this dataset, our ap-
proach was only applied for synthesizing indoor behaviors. It is
also interesting to synthesize outdoor behaviors by learning from
outdoor data captured by sensors, e.g., GPS trackers. (2) The original
dataset only specified the pet’s locations. We used questionnaire
responses to estimate the prior probability of a behavior being asso-
ciated with a location to annotate locations with possible behaviors
indirectly. In the field of Animal-Computer Interaction (ACI), recent
efforts have been made to gather pet behaviors automatically [3].
Pons et al. [49, 50] have extensively looked into the data collection
methods. Using such pet behavior data may increase the variety
and performance of the behavior generator.

Our approach can run in scenes besides the tested ones. How-
ever, scene complexity could affect the results. For example, object
detection could be inaccurate in a cluttered scene, which affects
the instantiation phase. Due to the performance limitations of the
Hololens, some objects might not be captured or detected, which
might affect the results of our approach. For example, the Hololens
helmet could not capture and reconstruct black objects. Although
object detection approaches achieve good performance, some fail-
ure cases are caused by occlusion or non-uniform illumination. In
our framework, the path planning is performed once in path instan-
tiation due to HoloLens’s limited computing power, so we cannot
handle dynamic scenes currently. If the computing power allows, in
behavior instantiation, the scene model and path planning can be
updated in real-time considering dynamic obstacles, e.g., a moving
person.

Our experiments aimed to validate each component of our ap-
proach, so the questionnaire was mainly about each designed com-
ponent. Integrating our synthesis framework with specific applica-
tions to evaluate the overall interaction experiences is a promising
future direction. For example, the therapeutic effect can be inves-
tigated with more realistic and vivid pets behaviors. We believe
the findings may shed light on the importance of rational behavior
synthesis, e.g., user engagement.

As an early attempt to apply scene semantics for animating
virtual pets, we synthesized abstract and high-level behaviors by
our approach. The low-level actions and poses of the pet were
pre-scripted animations in our experiments. One possible future
direction is to explore low-level pose and motion synthesis, which
can complement the high-level behaviors for obtaining fine-grained
behaviors. For example, different realistic poses for the pet can be
generated when instantiating a behavior by considering the 3D
geometry proximal to the pet. Such low-level pose and motion
variations would make the virtual pet appear more vivid.

Our proposed approach mainly focused on autonomous behav-
ior synthesis. The interactions with users also play a vital role in
virtual pet applications such as education and therapeutic studies.
A possible extension of our work is to trigger virtual pet’s behaviors
by a user’s voice, gesture, and gaze, which could be captured by a
HoloLens. The user’s commands may take priority over the pet’s
autonomous behaviors. Designing more interactive modes will be
another exciting direction in virtual pets research.

Another future direction is to extend our approach to drive robot
pets. Currently, robot pets can partially mimic a real pet, showing a
realistic appearance, making sounds like real pets, and performing
some characteristic actions. However, robot pets cannot generally
behave realistically according to a real scene’s semantics. Our ap-
proach could complement robot pet techniques by synthesizing
scene-aware behaviors. Equipped with high-quality sensors, a robot
pet can capture a map of its environment in real-time and obtain
the 3D model. Thus our approach could be applied for generating
and instantiating behaviors for robot pets.

In the future, we may also extend our approach to the pets
synthesis in video games. In a video game, the scene’s arrangement
is known beforehand as it is created manually. Our approach can
use the categories and locations of the objects in the game scene to
synthesize behaviors and paths for a virtual pet automatically.
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