
WARPY: Sketching Environment-Aware 3D Curves in
Mobile Augmented Reality

Rawan Alghofaili*
George Mason University

Cuong Nguyen
Adobe Research

Vojtěch Krs
Adobe Research

Nathan Carr
Adobe Research

Radomı́r Měch
Adobe Research

Lap-Fai Yu
George Mason University

Figure 1: We introduce WARPY, a tablet-based 3D curve drawing tool for AR. Our curve drawing method facilitates the creation
of complex (e.g. spirals) and large-scale curves. These curves enable us to add (a) decorative elements to a scene in-situ. They can
also be used to guide animations by serving as motion paths. (b–c) For example, a user can draw a path for an airplane that flies
through a sculpture. Because a tablet’s screen size may restrict the size and angle of curves users can create, we introduce a novel
multi-view drawing method that enables users to draw (d) large-scale curves from multiple angles. The user can draw multiple
small curves (e.g. at the left, top and right sides of the arc) and our tool will automatically stitch them to form a large curve.

ABSTRACT

Three-dimensional curve drawing in Augmented Reality (AR) en-
ables users to create 3D curves that fit within the real-world scene.
It has applications in 3D design, sculpting, and animation. However,
the task complexity increases when the desirable path for the curve
is obstructed by the physical environment or by what the camera can
see. For example, it is difficult to draw a curve that wraps around an
object or scales to out-of-reach places.

We propose WARPY, an environment-aware 3D curve drawing
tool for mobile AR. Our system enables users to draw freeform
curves from a distance in AR by combining 2D-to-3D sketch infer-
ence with geometric proxies. Geometric Proxies can be obtained via
3D scanning or from a list of pre-defined primitives. WARPY also
provides a multi-view mode to enable users to sketch a curve from
multiple viewpoints, which is useful if the target curve cannot fit
within the camera’s field of view. We conducted two user studies and
found that WARPY can be a viable tool to help users create complex
and large curves in AR.

Index Terms: Computing methodologies—Computer graphics—
Graphics systems and interfaces—Mixed / augmented reality

1 INTRODUCTION

The emergence of Augmented Reality (AR) provided a medium for
in-situ content authoring and design. Because of their simplicity,

*e-mail: ralghofa@gmu.edu

sketching interactions were incorporated into authoring and design
tools and thus were transferred to AR content authoring and design.
Researchers have proposed several solutions to facilitate conceptual
design via 3D strokes in AR [1, 24].

There are many benefits to 3D curve creation in AR. The ability to
ideate in-situ in real world spaces can unleash designers’ creativity
and help them achieve their vision more easily. For modeling, a
designer could create 3D curves that augment an existing physical
object, such as wrapping 3D strings of holiday lights around a tree.
For animation, 3D curves can be used as motion paths to guide a
virtual character to navigate physical barriers in a real space [46].

Although 3D curves for supporting these applications can be
created using desktop software such as Blender or Maya, the design
workflow is not as intuitive and contextual as in AR. For example,
using 3D scanning, one can capture a proxy of the physical world.
This 3D proxy can then be imported into desktop design software
where the relevant 3D curves can be drawn. Finally those 3D curves
can be exported into an AR application for viewing in the originally
captured space. This multi-step process can be tedious and error
prone with alignment issues. It also does not lend itself to fast
iterative design.

While creating 3D curves in AR is promising, such creations are
challenging as the complexity and the scale of the curve increase.
The standard solution is mid-air drawing, where a stroke is a geo-
metric realization of the path of a 3D-tracked hand or controller [37].
Although this direct solution is intuitive, it requires the user to nav-
igate the physical environment to create the AR curve. It is not
always trivial when the target curve is intended to wrap around an
object or scale to out-of-reach places.

Indirect solutions based on sketching on a tablet have been stud-

Figure 2: (a) The user placed transient geometry, then (b) drew a
curve that wraps around the geometry. (c) This curve can be edited
at a later point.

ied [1, 22]. These techniques enable users to sketch on a 2D tablet
screen, projecting the sketched points onto a planar or a curved
surface. These projection-based methods are more practical because
the user can stay in one place while creating a large-scale curve in
the physical environment [22]. However, planar and curved surfaces
limit the type of curves the designer can create. For example, a
designer cannot easily create volumetric shapes nor can they use
these surfaces to design spiral shapes like a helical spring that wraps
around an object in the physical environment.

Nevertheless, indirect AR curve sketching is becoming more ac-
cessible to designers. Most modern consumer tablets now support
AR out-of-the-box. Compared to AR glasses, tablet-based interac-
tions are also easier to use and can be more precise [2]. Moreover,
indirect drawing techniques enable users who have accessibility or
mobility issues to still enjoy AR drawing activities that would oth-
erwise be challenging to do using mid-air solutions. Therefore, we
aim to explore an indirect drawing technique that can help designers
create large-scale and complex depth-varying 3D curves on a mobile
AR system.

To realize this goal, we need to project a user’s 2D strokes on the
tablet into freeform 3D strokes in AR. We utilize the 2D sketch to
3D curve projection method proposed in Skippy [21]. The Skippy
system resolves the inherent ambiguity of this operation by analyzing
both the negative space around 3D scene geometry and the trajectory
of the input 2D strokes. Optimization is run using this information
and a smooth 3D path is inferred that wraps in and around the
geometry in the scene (Figure 1a and b).

However, simply porting Skippy as an indirect drawing technique
in AR would be problematic. Curves drawn in AR must consider
the context of the scene to infer the placement of the curve. In the
original Skippy system, context information for curve wrapping is
provided implicitly from the 3D models in the scene. In AR, the
backdrop for the drawing task is the video feed of an environment.
It is unclear how 3D geometries should be placed in the environment
as context, and how users can interact with them using Skippy to
create a desirable curve design in AR.

Moreover, the small field-of-view (FOV) of the tablet might affect
the user’s ability to draw on the environment context [22]. The orig-
inal Skippy system operates in a desktop 3D modeling environment
where curves can typically fit within a single viewpoint. In AR,
when drawing on scenes wider than the tablet’s FOV, the user might
have to move around to see the whole context. As illustrated in
Figure 3, in order to draw the flight path for the airplane, the user
must move back farther enough to draw one large curve that swoops
around the entire lobby. This approach might be possible to some
extent in an open space, but in this scenario, the room’s boundaries
restrict the user’s movement. These challenges necessitate a method

Figure 3: A motion path for a plane shown from multiple views.
Due to the limited screen size of the tablet, this curve cannot be
created from one view angle.

that facilitates the creation of large-scale curves from various view
angles.

To address these challenges, we introduce a new drawing tech-
nique for AR called WARPY. Our system combines the efficiency of
spatial interactions enabled by AR and the intelligent assistance of
2D to 3D sketch inference enabled by Skippy [21]. To use WARPY,
there are two main steps. First, the user can add 3D geometric prox-
ies onto the live AR video feed as context for the drawing. The 3D
geometry may come from a 3D reconstruction of a physical object
in the scene. We develop an interactive 3D scanning pipeline that
captures vertex data from the tablet’s LiDAR sensor and processes it
in an external server to produce a clean watertight mesh that is com-
patible with the Skippy algorithm. The user can scan and select an
interesting physical object in the scene as context, or simply choose
from a list of pre-defined primitive geometries. In the second step,
the user can start drawing 2D strokes on the tablet screen. Strokes
that pass through the added context geometries are processed in
real-time using the Skippy algorithm. Thus, using only 2D strokes,
users can still create a wide variety of freeform 3D curves in AR
(Figure 2).

Additionally, WARPY supports a novel multi-view drawing tech-
nique that enables a user to draw large-scale curves in AR. For
example, a motion path for an airplane that flies around a room
(Figure 3). Multi-view can be enabled with a toggle. In this mode, a
user can create segments of the curve from a few viewpoints that are
more accessible to her. Then, the system can merge the segments
into a desirable 3D curve.

After describing WARPY below, we report on two qualitative
user evaluations. We first examine how the two-step interactions in
WARPY could be used to support 3D curve drawing tasks in AR. We
then further examine an end-to-end drawing experience in WARPY,
where participants were asked to perform 3D scanning and then
design a complex 3D curve in a large space. The results demonstrate
that WARPY is a viable technique for drawing 3D curves in AR,
especially for complex and large curves.

2 RELATED WORK

2.1 AR Content Authoring
The ability to interact with the environment makes AR and an ex-
cellent medium for design and ideation. We reviewed several recent
works which explored the use of 3D interactions to facilitate content
authoring in AR.

Saquib et al. [36] introduced a system that enables users to create
animations triggered by their body movements. Users can create
graphical elements and set triggers in the form of specific hand
movements or body poses to initiate their animation. Users map
the graphics to the user’s body by interacting with a stick figure
representation in the system’s interface. PoseTween [26] can also
attach graphical elements to users’ body to create animations trig-
gered by their poses. However, PoseTween allows users to attach
the graphical elements on users’ body parts in a video of a pose
instead of a static stick figure representation. RealitySketch [41]
can also enable users to create interactive graphics in AR. Unlike
Saquib et al.’s system, users can embed content directly in AR using

sketching interactions. Our work is complementary to these existing
work. Our approach enables users to create curves that can be used
as motion paths for graphical elements.

Users can create animations in AR using a mobile device with
ARAnimator [46]. The mobile device’s orientation and position
are used to create motion paths for a 3D character. Moreover, the
character’s pose is inferred from the mobile device’s orientation
during movement with a Support Vector Machine (SVM). Using our
tool, users can create motion paths by sketching on a mobile device.

Several interfaces furnish users with the ability to embed content
into AR via sketching interactions. Users can sketch content to
be placed and animated in AR with Pronto [23]. However, users
can only draw on planar surfaces in Pronto. Our approach allows
users to draw freeform 3D curves in AR. Ye et al. [45] introduced
an AR mid-air curve drawing method using a mobile device. This
approach focuses specifically on reducing the tracking error in a
mid-air drawing technique. Our approach is an indirect drawing
technique. Users can draw 3D curves in the AR environment by
drawing on the 2D tablet surface. Our approach focuses less on the
precision of the curve and more on enabling users to create complex
3D shapes by utilizing contextual geometries placed in the AR scene.

2.2 3D Sketching with Proxies

Due to its effectiveness and simplicity for design, sketching as an
interaction was explored by researchers to facilitate 3D design.

Some systems rely on users creating rough strokes on proxies.
SketchingWithHands [20] was introduced to allow users to design
with captured first-person hand postures. These captured hand pos-
tures are used to design hand graspable and interactive 3D objects.
Similarly, Kim et al. [19] enables users to use their hands in the
design process. However, instead of capturing the still hand posture
for reference, users can move their hands in the air to create air
scaffolds. Users can attach 2D planar proxies on these scaffolds. In-
spired by these ideas, WARPY also allows users to insert 3D proxies
as a context for the curve design. This interaction allows users to
draw curves that wrap around the proxies more accurately and with
a single stroke.

Other 3D curve drawing systems [5, 12, 28, 47] focus on helping
users create smooth and clean curves. However, these curves must
be defined according to some 2D planes or other curves present in
the design. Cohen et al. [10] introduced a free-form curve drawing
system that projects users’ 2D strokes into 3D curves without the use
of proxies. Nevertheless, it relies on users drawing strokes’ shadows
to compute their projection which may not accelerate the creation
of real-time in-situ designs. In-situ sketch-based 3D modeling was
explored by Xu et al. [44]. After users load 3D models, Xu et al.’s
system generates planes using users’ strokes and the 3D models’
geometry. Users’ strokes are restricted on these 2D planes, while
our tool allows users to create free-form curves on 3D geometry.

The work of De Paoli et al. [11] provides an elegant method for
sketching in the shell space region surrounding 3D proxy shapes.
Arora et al. [3] introduced a projection method that enables mid-air
sketching on the surfaces of 3D models in mid-air. The motivation
behind our work was to enable sketching not just on, but also in, the
spaces between multiple objects real or virtual. For this reason, we
opted to follow the approach of Skippy by Krs et al. [21] to project
users’ 2D strokes directly into 3D curves to allow for real-time
in-situ design in AR.

SymbiosisSketch [1] utilizes surface proxies for 3D sketching.
Unlike previous systems [8, 19, 20] that use planar surfaces as the
drawing proxies, SymbiosisSketch allows curved non-planar sur-
faces to be used as proxies. Moreover, SymbiosisSketch utilizes a
motion capture camera to track a stylus for mid-air sketching which
makes it impractical to sketch large-scale designs outside of the
confined settings of a lab. We experimented our system with more
complex proxies based on full watertight 3D models that users could

scan or insert into the environment. WARPY allows users to draw
freeform curves that can wrap around these proxies rather than just
projecting onto them.

SweepCanvas [24] is a framework for rapidly prototyping objects
in 3D with sketch-based interaction. Users sketch pairs of profile
and trajectory strokes that define a sweep surface. These sweep
surfaces allow users to produce intricate designs in 3D which may
easily be transferred to AR. SweepCanvas generates a 3D object
from guiding sketch strokes instead of merely providing proxies or
sketching guides for users. However, the dependency on profile and
trajectory strokes limits the types of objects that can be created using
SweepCanvas. For example, users cannot design spiral shapes using
SweepCanvas compared to using our tool.

Finally, in Mobi3DSketch [22], users are equipped with a single
mobile device to sketch in AR. Similar to SymbiosisSketch, users
may create planar or curved surface proxies for better precision.
Mobi3DSketch was introduced to address the issues which restricted
SymbiosisSketch’s usability to be within a lab environment. Con-
trary to its predecessor, Mobi3DSketch introduced snapping points
that allow its users to connect strokes to a surface proxy or other
strokes. The snapping points, along with the portability of the sketch-
ing device, give users the ability to create large-scale 3D designs in
nearly any indoor and outdoor environment. Although both snapping
points and WARPY support the creation of large curves, WARPY en-
ables drawing more complex curves by wrapping the drawing around
3D geometries placed in AR. Also, snapping points do not consider
the shape of other geometry in the scene while connecting.

2.3 Using 3D Reconstruction for AR Authoring
Several commercial applications aimed to capture the scene geom-
etry and reconstruct it as a 3D mesh [17, 38]. These applications
focus on helping users create a high-quality 3D mesh scan. Though
we mainly focus on facilitating a mobile authoring experience for
users and not a high-resolution scene reconstruction, we took inspi-
ration from prior research into high-fidelity mesh reconstruction in
developing WARPY’s pipeline [16, 25, 32, 42].

Like WARPY several works have utilized 3D scanning within a
content authoring pipeline. For example, Chen et al. [9] enables
users to scan a mesh of furniture in a scene and animate them using
their body poses. VRFromX [18] allows users to edit a scanned
point cloud via mid-air sketching. The point cloud is then used to
automatically detect and place 3D models into the scene. Users can
create interactive VR experiences by assigning behaviours and af-
fordances to the models in the scene. Similarly, WARPY utilizes the
scanned scene geometry to facilitate animation creation by allowing
users to draw 3D motion paths on scanned geometry.

3 THE WARPY SYSTEM

Figure 4: Our method allows a
user to draw a curve on a 3D
geometry from multiple views in
AR. (a) A user can draw multiple
curves from different angles. (b)
These curves will be connected to
form a single overall curve. (c)
The resulting curve can be used as
an animation motion path.

Figure 4 illustrates our multi-
view curve projection pipeline in
WARPY. Our tool facilitates real-
time curve drawing on proxy ge-
ometry in AR using a tablet (2nd
generation iPad Pro with a LI-
DAR scanner). We also intro-
duce a multi-view curve drawing
method to enable the creation of
curves that span outside of the
tablet’s view. Figure 2 illustrates
how a user would use WARPY to
draw 3D curve in AR using a 2D
tablet interface. In the first step
(Figure 2a), the user places proxy
geometries in the environment where she would want to draw the 3D
curve. Transient geometries, like the cylinder shown in Figure 2, are
3D primitives placed by the user at a detected plane in AR. 3D proxy

(a) Users can place geometries
in the scene by tapping on the
iPad’s screen. The markers indi-
cate the tap locations

(b) Two spheres (in yellow) were se-
lected for editing.

Figure 5: Users can place and edit transient geometry.

geometries, similar to planar surfaces used in Mobi3DSketch [22] or
Pronto [23], facilitate the 3D sketching process in the environment.
Then, on the tablet, the user can draw curves that wrap or pivot
around the placed geometries (Figure 2b). This interaction is akin
to wrapping a rope around a pole at a distance. Finally, the curves
are automatically converted into 3D in real-time, and the user can
inspect or edit the results in AR (Figure 2c).

Figure 6 shows our tool’s user interface. The tool enables users
to place geometry proxies in AR and draw curves on this geometry.
Users can edit both the geometry and curves using our tool. Addi-
tionally, we introduced a method that facilitates drawing large-scale
multi-view curves in the scene.

3.1 Proxy Generation

WARPY relies on geometric proxies to generate the user’s curve.
These proxies can be in the form of a scanned mesh (i.e. for drawing
on physical objects) or primitive geometry (i.e. for drawing mid-air
shapes) placed in the scene. Users can also place a combination of
both types of geometric proxy for more complex drawing. Before
drawing the user will use the proxy generation menu to setup the
environment proxies and place transient geometry.

3.1.1 Environment Proxies

The user can capture the environment proxies by first scanning the
scene. WARPY will automatically store any mesh or planar geome-
tries detected as the user scans the scene. Any planar geometries that
are classified as wall, ceiling or floor will be surrounded by a bound-
ing box with a height of 5cm. These planar bounding boxes will be
subtracted from the scanned mesh. The stored planar geometries
can be enabled and utilised for drawing by toggling a button.

WARPY enables the user to define boundaries around the object/s
that they intend to draw on. WARPY uses the intersection between
these boundaries to define the positive space surrounding the object/s.
The user can define a boundary by tapping on the screen clockwise
or counter-clockwise to place the boundary’s edges. The user can
place multiple boundaries which will be aggregated to extract the
mesh and define the positive space.

WARPY then processes and cleans the extracted mesh using the
Blender API [15] to make the watertight mesh needed to compute
the SDF. First, WARPY removes any vertices that are a 0.0001m
distance or smaller apart and merges them by computing the centroid.
The mesh normals are reecalculated so they point outside of the
object. Then, the mesh is smoothed with one iteration of Laplacian
smoothing (λ = 5e−5). WARPY fills all holes in the mesh, then
dissolves vertices and edges to simplify the mesh. Finally, WARPY
performs a smooth remeshing operation with an octree of depth 9
to further simplify, fill holes, and smooth the mesh. The watertight
mesh produced by the previous step is used to compute the SDF [31].
WARPY computes the sign of the SDF by using the mesh’s depth
buffers [29].

Finally, to allow users to more easily load and view the mesh, a
low-resolution of the mesh is produced by applying the ”Decimate”
and collapse modifier [15]. We run this operation to maintain 0.3%
of the mesh’s faces.

3.1.2 Transient Geometry

Select geometry menu

Multi-view
mode

Animation view

Clear

Hide/show guides

Figure 6: The user interface of
our tool. Users can choose to cre-
ate a curve in multi-view mode;
view animations on their curves
using the animation view; clear
all transient geometries and curves
in the environment; and also hide
or show the geometry guides (i.e.
mesh or transient geometry).

The user can tap on the tablet’s
screen to place transient geom-
etry on planes detected in the
scene. We cast a ray from the
tap location to find the near-
est intersection point in the 3D
scene. The ray was cast parallel
to the camera direction to cor-
rectly identify the plane the user
intends to place the geometry on.
If the intersection point lies on
a horizontal plane, we place the
geometry upright with the bot-
tom face of the geometry paral-
lel to the plane and the geom-
etry centered around the inter-
section point. If the plane inter-
sected is vertical, we place the
geometry perpendicular to the
vertical plane and center the ge-
ometry around the intersection
point. Figure 5a shows examples
of transient geometry placed in the scene.

By default, we place cylinders when the user taps on the screen.
Nonetheless, the user can choose to change the type of geometry
to place in the scene from the main menu of our user interface.
In addition to cylinders, the user can select to place cubes and/or
spheres. We place the geometries facing the direction of the camera
as can be seen in Figure 5a.

We also allow the user to edit the geometry. By tapping on a
geometry placed in the scene, the geometry is illuminated to indicate
selection. We use the aforementioned ray-casting method used to
locate geometry placement location to identify the geometry the user
selected to edit. The user is presented with options to scale, translate
or rotate the selected geometry. The user can edit the geometry by
changing the values on sliders (e.g., scaling a sphere by changing
the value of the radius slider). Note that the user may select multiple
geometries of the same type to be edited concurrently (Figure 5b).

3.2 Curve Drawing

The user can draw 2D strokes on and around the geometry, which
are projected in real-time into 3D curves using the method proposed
in Skippy [21]. Similar to Skippy, we first sample vertices regularly
on the 2D stroke. Then, we cast a ray from the camera position
through each of the vertices. We use sphere tracing with a step size
of 0.01 meters along with the signed distance field to efficiently find
the intersection points of the rays and the geometry. We halt sphere
tracing when we reach a distance of 5 meters from the camera along
the ray.

After finding the intersection points on the transient geometry, we
create a graph and run the optimization approach proposed in Skippy
to produce the curve. Skippy projects the sketches to curves by
classifying the curve segments as ’on’ and ’off’ segments which lie
on and off the geometry respectively. Skippy uses non-intersecting
rays to define points that are off the geometry. Unless an AR device
is being used in an open space, it is unlikely that there will be any
non-intersecting rays on the stroke. One could use background
planes (e.g., floors, walls, ceilings) to define the ’off’ segments,
however, plane classification in AR is not yet robust enough to
result in noiseless classifications of all points on the stroke. Such

Figure 7: Users can edit curve segments by overdrawing on the curve.
Left: the user intended to edit a segment of this curve. Middle: the
selected segment was highlighted in pink. Right: the user swiped up
on the tablet’s screen to move the segment behind the cube.

challenges prompted us to use 3D primitives as our definition of
’on’ segments and the rest of the real-world as ’off’ segments. Our
approach can be extended to allow for drawing on scene geometry
without the use of 3D primitives by employing a robust background
plane labeling mechanism. We smooth the curves akin to the curve
smoothing method utilized in SymbiosisSketch [1].

Due to the interpolation method used in Skippy to connect two
’on’ segments with an ’off’ segment, some portions of the curve
may be placed below planes in the scene. This creates curves that
intersect and pass through surfaces like floors, ceilings, tables, or
seats. To avoid this problem, we project any points on the curve that
lie below any detected plane above it using the plane’s normal.

3.3 Curve Editing
We enable the user to edit the curve by moving any ’on’ segment
backward and forward. We attach a bounding box to each point
in an ’on’ segment. We set the bounding boxes’ lengths, widths
and heights to 0.02 meters. The user may select to edit an ’on’
segment by drawing over the majority (i.e. more than 50%) of the
bounding boxes attached to the segment. Once selected the segment
is highlighted as depicted in Figure 7. Then the user may swipe up
on the tablet’s screen to move the segment back and swipe down to
move it forward.

3.4 Multi-view Curve Drawing

Figure 8: Top-down view of two
curves (in dark orange) drawn onto
spheres from two views. The curves
are stitched to form a final curve.
The solid lines denote the original
rays from the cameras. The dashed
lines denote the interpolated rays.
For illustration simplicity, we show
a fewer number of rays than what
exists in practice.

The limited size of the tablet’s
screen may restrict the size of
the curves the user can draw.
Furthermore, the user may not
be able to draw curves that
span multiple view angles for
the same reason. We facili-
tate the creation of multi-view
curves by enabling the user to
draw multiple curves that are
stitched into a larger curve us-
ing our approach. Figure 9
shows an example of a multi-
view curve created using this
method.

We illustrate our multi-
view curve creation method in
Figure 8. The user can cre-
ate a multi-view curve by se-
lecting the multi-view mode
in our user interface’s main
menu as shown in Figure 6. Subsequently, the user can draw the
curves {C1,C2, . . . ,CM} from multiple views, where M is the number
of curves. The curves are arranged in the order of their drawing time.
These curves are drawn using the method discussed in Section 3.2
such that each curve Ci is created by casting N rays {ri

1,r
i
2, . . . ,r

i
N},

where each ray deviates from the previous ray by 1 degree by default.
We connect the curves in the order they are drawn. In other words,

we merge the M curves {C1,C2, . . . ,CM} by connecting every curve
Ci with the curve drawn in succession Ci+1. To connect the curve
Ci to the subsequent curve Ci+1, we use the last ray ri

N of Ci and the
first ray ri+1

1 of Ci+1. We perform an interpolation between the rays

C1 C2 C3 Multi-view curve

Figure 9: The multi-view curve used to create Figure 1d. This
curve was created by stitching the curves C1, C2 and C3 drawn from
multiple views.
ri

N and ri+1
1 to create N′ interpolated rays {ri,i+1

1 ,ri,i+1
2 , . . . ,ri,i+1

N ′ },
where each interpolated ray deviates from the previous interpolated
ray by 10 degree by default. We run sphere tracing on the interpo-
lated rays to find the intersection points with the transient geometry
as explained in Section 3.2.

Finally, we use the original rays (i.e. {ri
1,r

i
2, . . . ,r

i
N} for

i ∈ [1,M]) and the intersection points used to create the
curves {C1,C2, . . . ,CM}, together with the interpolated rays (i.e.
{ri,i+1

1 ,ri,i+1
2 , . . . ,ri,i+1

N ′ } for i ∈ [1,M−1]) and their corresponding
intersection points, to form the multi-view curve using the method
proposed in Skippy [21].

4 EVALUATION OF AR DRAWING

We conducted a user study to evaluate how our tool could help
users draw 3D curves on a mobile AR device. We asked participants
to replicate a set of representative ground truth 3D curves in AR
with different complexity and scales. We compared our tool with
conventional AR drawing methods like mid-air and surface drawing.

(a) Spiral (b) C-shape (c) Arc

Figure 10: Participants were asked to
draw the above curves shown to them
in the AR scene.

As an initial exploration
into this new drawing tech-
nique, we focus on evaluating
the feasibility of WARPY as a
3D drawing tool in AR. Thus,
we designed the tasks in this
study to be highly structured.
We also did not evaluate the
3D scanning component in
this study. Participants were
only allowed to add simple transient geometries as described in sec-
tion 4.1. In the next section, we will describe a follow up study where
we evaluate the end-to-end workflow in WARPY in an open-ended
creative scenario.
Participants. We recruited seventeen college and graduate stu-
dents whose ages ranged from 18-30 to participate in our user study.
Among the participants, ten were identified as females and seven
as males. None of the participants had a design background or
tablet-based drawing experience. Participants provided us with writ-
ten consent to participate and the study received approval from the
Institutional Review Board.
Setup. Participants used an 11-inch second-generation iPad Pro that
was running iOS 13.6. Participants were also provided with an Apple
Pencil stylus (2nd Generation). We implemented our prototype on
the ARKit platform.
Tasks. Participants were asked to draw a set of ground truth curves
which are rendered at scale in AR without tracing. We designed three
representative curves with different complexity and scale Figure 10.
Specifically, the C-shape curve has a simple shape and a small size
(0.3 meters height). The Spiral curve has the most complex shape
and a moderate size (0.6 meters height). And finally, the Arc curve
has a simple shape but the largest size (3.4 meters height).
Baseline System. In previous works, two standard techniques to
create 3D curve in AR include mid-air drawing [27, 37] and surface
drawing [22,23]. However, the types of curves that any of these tech-
niques can create are limited. Surface drawing can be used to create

**

*

Figure 11: The average Dynamic Time Warping (DTW) distance
between the created curves and the ground truth curves. A lower
DTW distance means a curve is more similar in shape to the ground
truth curve. The error bars represent the standard deviation.

large-scale curves, but it is restricted to a planar surface and therefore
cannot be used to create complex multi-depth curves (Figure 10a).
Mid-air drawing can be used to create arbitrary complex shapes, but
it might not be as robust for creating large-scale curves. Because of
the trade-off between flexibility and scale, we equipped the baseline
with both mid-air drawing and surface drawing capabilities. To
draw in mid-air, the participant entered the mid-air drawing mode
in the main menu of the baseline tool. Their curves were placed in
mid-air using the position and orientation of the device akin to the
mid-air absolute drawing method explored in Mobi3DSketch [22].
For surface drawing, participants can place planar surfaces in the
scene by tapping on the iPad’s screen. The planar surface is placed
using the same method of placing the transient geometry discussed
in Section 3.1.2. Strokes drawn on the iPad’s screen are projected
on the planar surfaces by using the surface-based drawing method
used in Mobi3DSketch. Participants can freely switch between these
drawing techniques in the study.
Procedure. Participants were first asked to complete a training
task for each condition. We showed them the functionalities of our
tool, which they could freely explore. Similarly, we demonstrated
the baseline tool’s features and allowed them to freely explore the
tool. We did not constrain the training task time. Participants on
average completed training using our tool in (M = 206.05,SD =
SD = 285.98) seconds while completed training using the baseline
in (M = 213.58,SD = 100.08) seconds.

Following the training task, participants completed six (6) tasks.
In each task, participants completed one of the three drawings shown
in Figure 10 using our tool or the baseline. To avoid any carryover
effects, we randomly assigned each participant the tool and drawing.

Participants were instructed to replicate the ground truths curve
as accurately as possible. When the task begins, the ground truth
curve of the task is rendered at scale in AR, and participants were
told to draw in the nearby area and without tracing the shape. They
were not told which method is best for each curve. Though, they
were shown the capabilities of each method (e.g. the ability to create
large curves using multi-view, wrap curves around proxies). They
could re-draw the curves as many times as they wanted.

After each drawing task, participants rated its the difficulty by
answering the following question using a 5-point Likert scale similar
to [33] with a rating of 1 (strongly disagree) to 5 (strongly agree): I
found the drawing task difficult. Finally, participants freely explored
our tool and the baseline and provided feedback on their experience.

4.1 Results
4.1.1 Shape Matching
We conducted a statistical shape analysis to ascertain whether par-
ticipants were able to correctly re-create the curves shown to them
in the user study. First, we used Procrustes analysis [39] to align
participants’ drawings to the ground truth curves shown in Figure 10.
Thereafter, we computed the nearest-neighbor DTW distance [14,30]
between each participant’s drawing and its corresponding ground

Spiral C-shape Arc

0

1

2

3

4

S
ca

le
(m

)

Warpy

Ground truth

Baseline {*{ **

{
{

**

*

Figure 12: The average scale of curves drawn by participants and the
scale of the ground truth curves participants were asked to match.

truth curve. A lower DTW distance means that a curve is more
similar in shape to the ground truth curve. For each trial, participants
could draw as many curves as they like. Thus, for the analysis, we
aggregated the results only from optimal curves—those with the
lowest DTW distance to the corresponding ground truths. Figure 11
shows the average computed distances for each tool in each task.

Participants were able to draw the Spiral more accurately (i.e.
at a smaller DTW distance from the ground truth) using our
tool (M = 39.55,SD = 28.40) compared to the baseline (M =
119.88,SD = 85.07). We conducted a paired t-test and found a
significant difference in the DTW distance of the Spiral curves
drawn using our tool compared to the baseline (t(16) = 4.23, p <
0.01,Cohen’s d = 1.03). Participants also drew the Arc more accu-
rately using our tool (M = 53.27,SD= 7.9) compared to the baseline
(M = 90.17,SD = 64.88), the difference was statistically significant
(t(16) = 2.27, p < 0.05,Cohen’s d = 0.55).

For C-shape, the average DTW distance of curves drawn using
our tool (M = 28.67,SD = 9.96) was also lower compared to the
baseline (M = 45.9,SD = 34.37). However, paired t-test showed no
significant difference (t(16) = 1.83, p = 0.09).

The DTW distance results indicate that participants were able to
match the shape of the ground truth curves with higher accuracy,
especially when the task requires interacting with complex curves
(e.g. Spiral) or with a bigger size (e.g. Arc).

4.1.2 Scale Matching
Figure 12 shows the average scale of the curves measured as the
length of the diagonal of the curves’ bounding boxes. We utilize
this metric to assess whether users are able to match their drawings’
scale to the reference ground truth curves.

Participants matched the Arc’s scale more closely using our tool
compared to the baseline. A Friedman test showed a significant dif-
ference in the Arc’s scale depending on the curve drawing tool used
to create the Arc (χ2(2)= 11.77, p< 0.01). A Wilcoxon signed-rank
test with Bonferroni correction did not show a significant difference
between the scale of Arcs drawn using our tool (M = 2.73,SD =
1.57) compared to the scale of the ground truth Arc shown to partici-
pants during the user study (3.4) (W = 1.73, p = 0.08). Conversely,
we found a significant difference between the average scale of the
Arcs drawn using the baseline (M = 1.70,SD = 1.05) compared to
the ground truth Arc (W = 3.48, p < 0.01,r = 0.42) and to our tools’
curves (W = 2.27, p < 0.05,r = 0.55).

The Friedman test found no significant difference in the scale of
the Spiral curves according to the tool used (χ2(2) = 4.59, p= 0.10).
Participants used our tool to draw Spirals with an average scale of
(M = 1.19,SD = 1.37) meters using our tool and (M = 0.66,SD =
0.52) meters using the baseline. These measures were not statically
different from the ground truth curve’s scale of 0.66 meters.

Participants drew the C-shape curves using our tool (M =
0.83,SD = 0.48) at a larger scale than the curve shown to them
during the study (0.32). On the other hand, participants were
able to draw the curves using the baseline (M = 0.52,SD = 0.40)
at a similar scale to the ground truth C-shape. A Friedman test

Figure 13: The average time taken by participants to complete the
user study curve creation tasks.

Figure 14: The drawing methods
participants used in the baseline.

showed an effect of the drawing
tool used on the C-shape’s scale
(χ2(2) = 14.59, p < 0.01). The
post-hoc test showed a signifi-
cant difference between the scale
of the C-shape created using
our tool compared to the ground
truth (W = 3.48, p < 0.01,r =
0.84) and compared to the base-
line (W = 2.44, p < 0.05,r =
0.59). However, we did not find
a statistical difference between
the scale of the curves drawn using the baseline and the ground truth
(W = 1.49, p = 0.14).

These results suggest that the scale of the curves created in our
approach also closely match the scale of the ground truth curves,
especially when the task requires replicating a large curve (e.g. the
Arc is at 3.4 meters height). Moreover, participants in the baseline
condition could better match the scale when the ground truth curves
are simple and small (e.g. the Spiral and C-shape tasks, respectively).

The baseline condition log revealed that most participants opted
to use mid-air drawing (Figure 14). Previous research has shown that
mid-air drawing tends to be less accurate compared to drawing on a
physical surface like the tablet screen in our approach [2, 43]. For
the Spiral and Arc curves, participants might have had to maneuver
the tablet at an undesirable motor distance (e.g. reaching or circling
motion), which can introduce further inaccuracies.

4.1.3 Task Completion Time
We also recorded the total amount of time in seconds participants
took to complete the tasks using each tool as shown in Figure 13.

Overall, participants took slightly longer time to complete tasks
when using our tool. We conducted a paired t-test and found no
significant differences in the task completion time for all draw-
ing tasks using our tool compared to the baseline. Specifically,
participants completed the Spiral drawing task in an average of
(M = 119.13,SD = 153.56) seconds using our tool and in an
average of (M = 83.68,SD = 58.58) seconds using the baseline
(t(16) = 0.97, p = 0.35). For C-shape, participants completed the
task in (M = 73.72,SD = 64.04) seconds using our tool and in (M =
51.31,SD = 42.51) seconds using baseline (t(16) = 1.20, p = 0.25).
For Arc, participants completed the task in (M = 92.32,SD = 62.92)
seconds using our tool and in (M = 66.97,SD = 58.74) seconds
using baseline (t(16) = 1.13, p = 0.28).

4.1.4 Subjective Difficulty Ratings
Figure 15 visualizes participants’ answer to the question ”I found
the drawing task difficult.” A Wilcoxon signed-rank test found no
significant difference between the difficulty of the Spiral drawing
task using our tool (Md = 3 neutral) compared to the baseline (Md =
2 disagree) (W = 1.76, p = 0.08).

Participants were neutral about the difficulty of the C-shape draw-
ing task using our tool (Md = 3 neutral) but reported a rating of 1 for

**

*

Figure 15: Participants answered the question ”I found the drawing
task difficult” with a rating of 1 (strongly disagree) to 5 (strongly
agree) after each task. The diamonds show outliers. The error bars
represent the Interquartile Range (IQR).

the baseline (Md = 1 strongly disagree). The Wilcoxon signed-rank
test also found a significant difference between the C-shape diffi-
culty ratings (W = 2.84, p < 0.01,r = 0.69). Similarly, participants
were neutral about the difficulty of the Arc drawing task with our
tool (Md = 3 neutral) while rating the task as easier using the base-
line (Md = 1 strongly disagree). We found a significant difference
between participants’ ratings while using our tool compared to the
baseline (W = 2.35, p < 0.05,r = 0.57).

Even though participants did not report drawing with our tool
to be difficult, they found surface drawing and mid-air drawing
methods to be more intuitive for simple shapes such as the Arc.
Several participants (P4,P11,P17) voiced that they enjoyed drawing
on 3D geometry but they needed more practice to get familiar with
the technique compared to using surface and mid-air drawing.
4.2 Discussion
In this first study, we seek to understand how the drawing interaction
supported by WARPY would be used in AR. We found that our
system enabled participants to create challenging 3D curves that are
either comparable or in some cases better than those produced by
standard AR methods like mid-air drawing or tablet-based drawing.

More specifically, when the target curves are complex, such as
those in the Arc and Spiral tasks, our approach enabled users to
match the shape of the target more closely. Additionally, for scale
matching, we found that for a large curve like Arc, participants using
our approach were able to better match the scale of the target. At
3.4 meters, the Arc curve was tall enough to be out of reach for
participants who used the mid-air technique, so most participants in
the baseline condition created a smaller replication of the Arc. In
contrast, participants using our approach benefited from being able
to draw from a distance, which allowed them to have a better view
to compare and validate their curves with the ground truth.

For simple curves, such as in the C-shape task, the benefit of our
approach is not as prominent compared to the baseline condition.
The C-shape target was small and flat so participants could easily
trace it accurately using either the mid-air or the surface drawing
technique in the baseline condition. In contrast, in our approach,
participants could replicate the shape of the C-shape curve well, but
the scale of the curves is generally much larger than the ground truth
curve. We observed that participants placed a cylinder in the task
and then stepped back at a distance to draw the curve that would be
interpolated around the cylinder to create the C-shape curve. As they
were farther away, it was likely that the interpolated results might
have been larger and/or curved away from the geometry differently
than they expected.

5 EVALUATION OF THE ENTIRE WORKFLOW

The results from the first study validated that users could use
WARPY as a drawing tool in AR. However, the first study did not
evaluate the entire workflow of WARPY. Thus, we conducted a sec-
ond study to evaluate how users can utilize the scene geometry in a
physical space to engage in a creative task. We asked participants to

Figure 16: Results of the survey conducted after our second study.

use both the scanning and drawing components in WARPY to design
a 3D animated roller coaster track in a community lounge.

We conducted two smaller design sessions within this study. In
the first session, participants were asked to scan an arbitrary object in
the room and then design the roller coaster track based on that object.
In the second session, participants were asked to design a roller
coaster track around a large pre-scanned pool table. We chose this
study design to evaluate the scanning and the drawing experiences
separately. Due to the experimental nature of our mesh processing
server, scanning the large pool table might take participants a few
trials to complete. Thus we did not ask them to scan the pool table
and instead ask them to focus on the creative task.
Participants. Eight college and graduate students whose ages
ranged from 23-29 participated in this study. Three participants
identified as female and five as male. Participants provided us with a
written consent to participate, and the study received approval from
the Institutional Review Board.
Setup. We utilized the same setup as our first AR drawing study.
Additionally, because this task is situated in a large physical space,
participants might have to traverse the environment more. Thus,
we enabled only stylus drawing to allow participants to more easily
maneuver the iPad without accidentally drawing any curves.
Tasks. We asked participants to complete two free-form design ses-
sions. In both sessions, participants were asked to create a 3D track
for a roller coaster animation in AR. In the first session, participants
tested the entire WARPY by scanning an object in the environment
and then creating a 3D curve on the scanned object. In the second
session, participants were only asked to design the roller coaster
track for a pre-scanned pool table (supplementary material). In this
session, participants were encourage to create a large design.
Procedure. Akin to our previous study, participants first completed
a training task before starting the study. They were shown the full
functionality of WARPY and given the opportunity to practice the
drawing interaction. We used the pre-scanned pool table mesh in the
training phase. After the training task, participants completed both
sessions. Following the completion of each session, they completed
a survey to rate their experience using a 5-point Likert scale with a
rating of 1 (strongly disagree) to 5 (strongly agree).

We measured participant’s movement during the task by recording
the xyz 3D coordinate of the iPad device. We also saved participants’
final roller coaster design. For the qualitative survey, participants
answered the questions shown in Figure 16.

5.1 Results
5.1.1 Session 1: Scan and draw
In Session 1, we asked participants to pick an arbitrary object in the
room, scan and then draw a roller coaster track based on it. The goal
of this session was to evaluate the role of the scanning component in
helping users draw in WARPY. Our supplementary material contains
example objects that participants scanned and processed by WARPY.

(a) P2, P5, P7, and P8 (b) P1, P3, P4, and P6
Figure 17: Movements of participants.

Figure 16 (top) shows the participants’ ratings of several aspects of
the workflow. Overall, participants agreed that the scanning process
was straightforward (8/8, Q1) and the returned scan results matched
their expectations (8/8 in Q4 and 7/8 in Q5).

Capturing a 3D scan using an AR device is not a trivial task. Scan-
ning applications need to provide some visual guidance to users [35].
WARPY also provides an AR bounding box technique to help users
capture the desirable model. All participants agreed that the visual-
ization was helpful (8/8, Q2). However, only four participants found
it easy to define the bounding box for the scan processing server
(Q3). In the post-study interview, participants reported small drifting
issues in the AR device caused the confusion (P3, P4, P6). When the
bounding box moves due to drifts, participants had to walk around
the object to re-inspect all the boundaries.

Nevertheless, participants were able to scan and draw the intended
curves. Participants agreed that they could create a drawing based
on the scanned object (6/8, Q6) and that they were able to create
the curve they intended to (8/8, Q7). Participants explained that the
strength of the technique is the ability to interact with real-world
objects using virtual interactions, “It was impressive to interact with
actual objects in the real world with my virtual interactions” (P2).
P5 shared similar remarks: “I can get an automatically completed
trajectory by simply drawing a few strokes, considering the complex
geometry in the 3d environment”. Participants also shared thoughts
on improving the drawing technique by increasing the rendering
speed (P4 “Sometimes the lag between my drawing and the rendering
confuses me. I don’t know if I should repeat the stroke again”) and
providing more fine-grain editing options (P6, “It is hard that we
need to clear everything after failing and start over”).

5.1.2 Session 2: drawing a large curve
In the second part of the study, we asked participants to focus only on
creating a large roller coaster track in a big space. We provided par-
ticipants with a pre-scanned mesh of a big pool table in the middle of
a lounge area. Figure 16 (bottom) shows an overview of participants’
ratings of their drawing experience. Overall, participants did not
find the drawing task difficult (6/6 rated, Q8).

This is a surprising finding as participants produced curves that
were mostly complex in style and large in size (Figure 18). The
resulting roller coaster tracks interact with the pool table in a variety
of ways. For example, P7 and P3 created tracks that loops underneath
the pool table. P2 and P6 created tracks with more height, making
loops that were close to the ceiling or to the decorative ceiling lights.
Six participants ranked their agreement highly to the statement “I
was able to explore new designs that I have not thought of before”.

Looking further into the creative process behind the drawings.
Six participants rated that it was not too difficult to interact with
the scene (6/6, Q10). We looked into participants’ movement in the
study to examine their strategies in interacting with the pool table.
Figure 17a and 17b shows two distinct movement patterns observed
in the study. One group of participant clustered in one corner of the
room, another group wandered around. Both groups did not cross
the pool table or try to raise the iPad toward the ceiling. Yet, they
are able to produce the complex designs in Figure 18. These results
show that they were able to use WARPY to create these 3D designs

comfortably from a distance using 2D strokes on the tablet.
Participants leveraged transient geometries to control the curve

segments outside of the mesh. For example, P2 placed a sphere on
the pendant light above the pool table and used it to draw a loop
segment of the curve. This resulted in a roller coaster path that
travels from the pool table to the light. P2 and P6 also placed large
cylinders to increase their curve heights.

The Multi-view mode was instrumental in helping participants
complete the design task. Seven participants ranked highly their
agreement to the statement “I found that Multi-view mode was help-
ful in allowing me to create a complex curve”. In the post-study
interview, P1 and P2 explained that the Multi-view mode helps make
the drawing task easier and more creative because they do not have
to worry about filling every corners or every gaps in the scene. P5
explained further: “Drawing directly on 3d is quite challenging due
to some occlusion, and this technique really helps.”

5.2 Discussion
The drawing interaction in WARPY is essentially 2D, but most of
our participants felt satisfied about the 3D curves they created and
felt they could design curves that interact with real-world objects.
This is an important finding as a well-known problem of 2D drawing
is the difficulty in expressing 3D shapes [6]. In AR, it is possible
to create expressive 3D curves, but users have to use more direct
approaches that would require them to move through the physical
space. This assumption is not always feasible if the user has limited
mobility due to the environment (i.e. having to crouch down to draw
under the pool table) or their own accessibility needs (i.e., being
on a wheelchair). With WARPY, users can draw indirectly from a
tablet. A majority of the 3D shapes are inferred in real-time from
their 2D strokes, helping to reduce the range of motion required to
accomplish the full design. Thus, our technique provides a viable
alternative to make creative 3D drawing in AR more accessible.

The Multi-view mode also assist users by softening the physical
restrictions the users may face. An implicit assumption about 3D
drawing in AR is that a user has a good view of the drawing target
on the AR display. When creating a 3D curve that spans over a large
distance, such as a roller coaster track that go from one end of the
pool table to another, the user must move the AR device to maintain
a view of the object for the entire time. This requirement could
make drawing more tedious and error-prone. The Multi-view mode
softens this constraint by enabling user to create smaller segments
of the curve and then having them merged later. Furthermore, this
mode encourages users to change their viewpoint which allows them
to better plan their next stroke [7]. This leads to a quicker and more
enjoyable experience.

To sum, the results from the two sessions in this study further
show that WARPY is a viable technique for designing environment-
aware 3D curves in AR. WARPY gives users a set of tools such as
environment proxy, 2D-to-3D curve inference, and Multi-view to
design 3D curves using 2D strokes. These tools work together in a
streamline workflow to soften the mobility and viewpoint constraints
that users may face when drawing in AR, giving users more creative
power to design freeform 3D curves in an environment.

6 LIMITATIONS AND FUTURE WORK

Our workflow currently requires users to manually define the bound-
aries of object/s in the scan that they intend to draw on. By incorpo-
rating scene semantic segmentation [34], users can simply select the
objects by tapping on the screen and casting a ray to find the closest
point cloud semantic cluster. This cluster can be thereafter used to
generate the final mesh.

In some cases like the curve created by P3 in Figure 18, the curve
may intersect with the edges of the scanned proxies. This visual
artifact is due to a slight imprecision in the scan that spilled-over to
the computation of the SDF, which in turns affect the interpolation in

Figure 18: Curves created using WARPY animated into roller coaster
tracks. The tracks are rendered and the carts animated by computing
the Frenet–Serret frames from the curve points.

the Skippy algorithm. By implementing better mesh reconstruction
and processing mechanisms and/or utilizing a more robust SDF
computation, we can avoid these artifacts.

WARPY does not allow for fine-grained control over the optimized
curve results. It currently only provides a simple edit tool for users
to modify whether a curve segment should be in front or behind the
geometry. We believe developing more advanced interfaces for a user
to control the output of the interpolated results will make our system
even more practical. Some examples of edit tools include supporting
drawing more than one curve and fine-tuning the smoothness and
shapes of individual segments in the curve.

Finally, our approach was implemented on a mobile AR device.
Our findings are generally applicable to other tablet-based content
creation applications in AR and VR [1, 13, 40]. However, we have
not evaluated our approach on a more immersive platform like AR
glasses. One unique advantage of AR glasses compared to mobile
AR is more robust 6DOF hand tracking while freeing the user’s hand
from holding the tablet. One interesting direction is to explore how
spatial and tangible interactions around the tablet could be integrated
to reinforce our 3D curve creation workflow [4].

7 CONCLUSION

We introduced WARPY, a 3D curve drawing tool for Augmented
Reality. WARPY uses a 2D-to-3D sketch inference method and geo-
metric proxies to facilitate in-situ curve creation. WARPY let users
create geometric proxies by scanning physical objects or placing
virtual primitives in AR. WARPY also provides a novel Multi-view
drawing technique to address the challenges that arise when drawing
large-scale curves that do not fit within an AR camera’s field of view.

We conducted two user studies to evaluate WARPY. We first
compared WARPY with a baseline mid-air drawing technique in a
structured drawing task. We found that for curves with challenging
shapes such as a spiral or a tall arc, our system can serve as a viable
AR drawing technique. Encouraged by this result, we conducted a
follow up study to evaluate an end-to-end design experience where
users can use WARPY to create a large 3D curve design for a phys-
ical space. We found the design of the curves that users created
interact well with the geometry in the environment and users felt the
experience was satisfactory and enjoyable.

Designing AR spaces in-situ provides numerous challenges in
accessibility due to scale, structure, and variety of physical environ-
ments. Our work circumvents this issue by proposing a computer
assisted curve drawing system which we hope can make the AR
creation process more approachable for all.

ACKNOWLEDGMENTS

This project was supported by NSF grants (award numbers: 1942531
and 2128867). We would like to thank Adobe Research for their
generous donations to GMU’s DCXR group. We would also like to
thank the anonymous reviewers for their constructive feedback.

REFERENCES

[1] R. Arora, R. Habib Kazi, T. Grossman, G. Fitzmaurice, and K. Singh.
SymbiosisSketch: Combining 2D & 3D Sketching for Designing De-
tailed 3D Objects in Situ, p. 1–15. Association for Computing Machin-
ery, New York, NY, USA, 2018.

[2] R. Arora, R. H. Kazi, F. Anderson, T. Grossman, K. Singh, and G. Fitz-
maurice. Experimental evaluation of sketching on surfaces in vr. In
Proceedings of the 2017 CHI Conference on Human Factors in Com-
puting Systems, CHI ’17, p. 5643–5654. Association for Computing
Machinery, New York, NY, USA, 2017.

[3] R. Arora and K. Singh. Mid-air drawing of curves on 3d surfaces in
virtual reality. ACM Trans. Graph., 40(3), July 2021. doi: 10.1145/
3459090

[4] D. Avrahami, J. O. Wobbrock, and S. Izadi. Portico: Tangible interac-
tion on and around a tablet. In Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology, UIST ’11, p.
347–356. Association for Computing Machinery, New York, NY, USA,
2011. doi: 10.1145/2047196.2047241

[5] S.-H. Bae, R. Balakrishnan, and K. Singh. Ilovesketch: As-natural-as-
possible sketching system for creating 3d curve models. In Proceedings
of the 21st Annual ACM Symposium on User Interface Software and
Technology, UIST ’08, p. 151–160. Association for Computing Ma-
chinery, New York, NY, USA, 2008. doi: 10.1145/1449715.1449740

[6] S.-H. Bae, R. Balakrishnan, and K. Singh. Ilovesketch: As-natural-as-
possible sketching system for creating 3d curve models. In Proceedings
of the 21st Annual ACM Symposium on User Interface Software and
Technology, UIST ’08, p. 151–160. Association for Computing Ma-
chinery, New York, NY, USA, 2008. doi: 10.1145/1449715.1449740

[7] M. D. Barrera Machuca, W. Stuerzlinger, and P. Asente. The effect
of spatial ability on immersive 3d drawing. In Proceedings of the
2019 on Creativity and Cognition, C&C ’19, p. 173–186. Association
for Computing Machinery, New York, NY, USA, 2019. doi: 10.1145/
3325480.3325489

[8] M. D. Barrera Machuca, W. Stuerzlinger, and P. Asente. Smart3dguides:
Making unconstrained immersive 3d drawing more accurate. In 25th
ACM Symposium on Virtual Reality Software and Technology, VRST
’19. Association for Computing Machinery, New York, NY, USA, 2019.
doi: 10.1145/3359996.3364254

[9] J. Chen, S. Izadi, and A. Fitzgibbon. KinÊTre: Animating the World
with the Human Body, p. 435–444. Association for Computing Ma-
chinery, New York, NY, USA, 2012.

[10] J. M. Cohen, L. Markosian, R. C. Zeleznik, J. F. Hughes, and R. Barzel.
An interface for sketching 3d curves. In Proceedings of the 1999
Symposium on Interactive 3D Graphics, I3D ’99, p. 17–21. Association
for Computing Machinery, New York, NY, USA, 1999. doi: 10.1145/
300523.300655

[11] C. De Paoli and K. Singh. Secondskin: Sketch-based construction of
layered 3d models. ACM Trans. Graph., 34(4), July 2015. doi: 10.
1145/2766948

[12] T. Dorta, G. Kinayoglu, and M. Hoffmann. Hyve-3d and the 3d cursor:
Architectural co-design with freedom in virtual reality. International
Journal of Architectural Computing, 14(2):87–102, 2016. doi: 10.
1177/1478077116638921

[13] T. Drey, J. Gugenheimer, J. Karlbauer, M. Milo, and E. Rukzio. Vrs-
ketchin: Exploring the design space of pen and tablet interaction for 3d
sketching in virtual reality. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems, p. 1–14. Association for
Computing Machinery, New York, NY, USA, 2020.

[14] A. Efrat, Q. Fan, and S. Venkatasubramanian. Curve matching, time
warping, and light fields: New algorithms for computing similarity
between curves. J. Math. Imaging Vis., 27(3):203–216, Apr. 2007. doi:
10.1007/s10851-006-0647-0

[15] B. Foundation. Blender python api.
[16] R. Hanocka, G. Metzer, R. Giryes, and D. Cohen-Or. Point2mesh: A

self-prior for deformable meshes. ACM Trans. Graph., 39(4), jul 2020.
doi: 10.1145/3386569.3392415

[17] A. Inc. Create 3d models with object capture.
[18] A. Ipsita, H. Li, R. Duan, Y. Cao, S. Chidambaram, M. Liu, and

K. Ramani. VRFromX: From Scanned Reality to Interactive Virtual

Experience with Human-in-the-Loop. Association for Computing Ma-
chinery, New York, NY, USA, 2021.

[19] Y. Kim, S.-G. An, J. H. Lee, and S.-H. Bae. Agile 3d sketching with
air scaffolding. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, CHI ’18. Association for Computing
Machinery, New York, NY, USA, 2018.

[20] Y. Kim and S.-H. Bae. Sketchingwithhands: 3d sketching handheld
products with first-person hand posture. In Proceedings of the 29th
Annual Symposium on User Interface Software and Technology, UIST
’16, p. 797–808. Association for Computing Machinery, New York,
NY, USA, 2016. doi: 10.1145/2984511.2984567

[21] V. Krs, E. Yumer, N. Carr, B. Benes, and R. Měch. Skippy: Single
view 3d curve interactive modeling. ACM Trans. Graph., 36(4), July
2017. doi: 10.1145/3072959.3073603

[22] K. C. Kwan and H. Fu. Mobi3dsketch: 3d sketching in mobile ar.
In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, p. 1–11. Association for Computing Machinery,
New York, NY, USA, 2019.

[23] G. Leiva, C. Nguyen, R. H. Kazi, and P. Asente. Pronto: Rapid
augmented reality video prototyping using sketches and enaction. In
Proceedings of the 2020 CHI Conference on Human Factors in Comput-
ing Systems, CHI ’20, p. 1–13. Association for Computing Machinery,
New York, NY, USA, 2020.

[24] Y. Li, X. Luo, Y. Zheng, P. Xu, and H. Fu. Sweepcanvas: Sketch-based
3d prototyping on an rgb-d image. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology, UIST
’17, p. 387–399. Association for Computing Machinery, New York,
NY, USA, 2017. doi: 10.1145/3126594.3126611

[25] Z. Li, P. C. Gogia, and M. Kaess. Dense surface reconstruction from
monocular vision and lidar. In 2019 International Conference on
Robotics and Automation (ICRA), pp. 6905–6911, 2019. doi: 10.1109/
ICRA.2019.8793729

[26] J. Liu, H. Fu, and C.-L. Tai. Posetween: Pose-driven tween animation.
In Proceedings of the 33rd Annual ACM Symposium on User Interface
Software and Technology, UIST ’20, p. 791–804. Association for Com-
puting Machinery, New York, NY, USA, 2020. doi: 10.1145/3379337.
3415822

[27] L. Logical Animal. Lightspace - 3d painting in ar, Sep 2017.
[28] M. D. B. Machuca, P. Asente, W. Stuerzlinger, J. Lu, and B. Kim.

Multiplanes: Assisted freehand vr sketching. In Proceedings of the
Symposium on Spatial User Interaction, SUI ’18, p. 36–47. Association
for Computing Machinery, New York, NY, USA, 2018. doi: 10.1145/
3267782.3267786

[29] M. K. (marian42). Calculate signed distance fields for arbitrary meshes.
[30] R. Niels. Dynamic time warping: An intuitive way of handwriting

recognition? 2004.
[31] J. J. Park, P. Florence, J. Straub, R. A. Newcombe, and S. Lovegrove.

Deepsdf: Learning continuous signed distance functions for shape
representation. CoRR, abs/1901.05103, 2019.

[32] S. Peng, C. M. Jiang, Y. Liao, M. Niemeyer, M. Pollefeys, and
A. Geiger. Shape as points: A differentiable poisson solver. In Ad-
vances in Neural Information Processing Systems (NeurIPS), 2021.

[33] K. Pfeuffer and H. Gellersen. Gaze and touch interaction on tablets. In
Proceedings of the 29th Annual Symposium on User Interface Software
and Technology, UIST ’16, p. 301–311. Association for Computing Ma-
chinery, New York, NY, USA, 2016. doi: 10.1145/2984511.2984514

[34] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learn-
ing on point sets for 3d classification and segmentation. CoRR,
abs/1612.00593, 2016.

[35] A. Sankar and S. M. Seitz. Interactive room capture on 3d-aware
mobile devices. In Proceedings of the 30th Annual ACM Symposium
on User Interface Software and Technology, UIST ’17, pp. 415–426.
ACM, New York, NY, USA, 2017. doi: 10.1145/3126594.3126629

[36] N. Saquib, R. H. Kazi, L.-Y. Wei, and W. Li. Interactive body-driven
graphics for augmented video performance. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems, pp. 1–12,
2019.

[37] S. Schkolne, M. Pruett, and P. Schröder. Surface drawing: Creating
organic 3d shapes with the hand and tangible tools. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI

’01, p. 261–268. Association for Computing Machinery, New York,
NY, USA, 2001. doi: 10.1145/365024.365114

[38] E. G. S. s.r.o. Realitycapture: Mapping and 3d modeling photogeome-
try.

[39] M. B. Stegmann and D. D. Gomez. A brief introduction to statistical
shape analysis, mar 2002. Images, annotations and data reports are
placed in the enclosed zip-file.

[40] H. B. Surale, A. Gupta, M. Hancock, and D. Vogel. Tabletinvr: Ex-
ploring the design space for using a multi-touch tablet in virtual reality.
In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, p. 1–13. Association for Computing Machinery,
New York, NY, USA, 2019.

[41] R. Suzuki, R. H. Kazi, L.-Y. Wei, S. DiVerdi, W. Li, and D. Leithinger.
Realitysketch: Embedding responsive graphics and visualizations in
ar with dynamic sketching. In Adjunct Publication of the 33rd Annual
ACM Symposium on User Interface Software and Technology, UIST
’20 Adjunct, p. 135–138. Association for Computing Machinery, New
York, NY, USA, 2020. doi: 10.1145/3379337.3415892

[42] I. Vizzo, X. Chen, N. Chebrolu, J. Behley, and C. Stachniss. Poisson
Surface Reconstruction for LiDAR Odometry and Mapping. In Proc. of
the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2021.

[43] P. Wacker, A. Wagner, S. Voelker, and J. Borchers. Physical guides: An
analysis of 3d sketching performance on physical objects in augmented
reality. In Proceedings of the Symposium on Spatial User Interaction,
SUI ’18, p. 25–35. Association for Computing Machinery, New York,
NY, USA, 2018. doi: 10.1145/3267782.3267788

[44] P. Xu, H. Fu, Y. Zheng, K. Singh, H. Huang, and C.-L. Tai. Model-
guided 3d sketching. IEEE Transactions on Visualization and Com-
puter Graphics, 25(10):2927–2939, 2019. doi: 10.1109/TVCG.2018.
2860016

[45] H. Ye, K. Kwan, and H. Fu. 3d curve creation on and around phys-
ical objects with mobile ar. IEEE Transactions on Visualization &
Computer Graphics, (01):1–1, jan 5555. doi: 10.1109/TVCG.2020.
3049006

[46] H. Ye, K. C. Kwan, W. Su, and H. Fu. Aranimator: In-situ character
animation in mobile ar with user-defined motion gestures. 39(4), July
2020. doi: 10.1145/3386569.3392404

[47] E. Yu, R. Arora, T. Stanko, J. A. Bærentzen, K. Singh, and A. Bousseau.
CASSIE: Curve and Surface Sketching in Immersive Environments.
Association for Computing Machinery, New York, NY, USA, 2021.

	Introduction
	Related Work
	AR Content Authoring
	3D Sketching with Proxies
	Using 3D Reconstruction for AR Authoring

	The Warpy system
	Proxy Generation
	Environment Proxies
	Transient Geometry

	Curve Drawing
	Curve Editing
	Multi-view Curve Drawing

	Evaluation of AR Drawing
	Results
	Shape Matching
	Scale Matching
	Task Completion Time
	Subjective Difficulty Ratings

	Discussion

	Evaluation of the entire workflow
	Results
	Session 1: Scan and draw
	Session 2: drawing a large curve

	Discussion

	Limitations and Future Work
	Conclusion

